Update app.py
Browse files
app.py
CHANGED
@@ -63,8 +63,8 @@ def loading_data(img):
|
|
63 |
def predict(img):
|
64 |
"""the main process of inference"""
|
65 |
test_loader = loading_data(img)
|
66 |
-
model = SASNet()
|
67 |
-
|
68 |
model_path = "./SHHA.pth"
|
69 |
# load the trained model
|
70 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
@@ -76,8 +76,9 @@ def predict(img):
|
|
76 |
for vi, data in enumerate(test_loader, 0):
|
77 |
img = data
|
78 |
#img = img.cuda()
|
|
|
79 |
pred_map = model(img)
|
80 |
-
|
81 |
for i_img in range(pred_map.shape[0]):
|
82 |
pred_cnt = np.sum(pred_map[i_img]) / 1000
|
83 |
|
|
|
63 |
def predict(img):
|
64 |
"""the main process of inference"""
|
65 |
test_loader = loading_data(img)
|
66 |
+
#model = SASNet()
|
67 |
+
model = SASNet().cpu()
|
68 |
model_path = "./SHHA.pth"
|
69 |
# load the trained model
|
70 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
|
|
76 |
for vi, data in enumerate(test_loader, 0):
|
77 |
img = data
|
78 |
#img = img.cuda()
|
79 |
+
img = img.cpu()
|
80 |
pred_map = model(img)
|
81 |
+
pred_map = pred_map.data.cpu().numpy()
|
82 |
for i_img in range(pred_map.shape[0]):
|
83 |
pred_cnt = np.sum(pred_map[i_img]) / 1000
|
84 |
|