leonelhs commited on
Commit
64da213
·
1 Parent(s): 1ef84a3

init space

Browse files
Files changed (7) hide show
  1. .gitignore +3 -0
  2. app.py +59 -0
  3. examples/01.jpg +0 -0
  4. examples/02.jpg +0 -0
  5. examples/03.jpg +0 -0
  6. pose_estimator.py +55 -0
  7. requerimets.txt +4 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ *.pyc
2
+ __pycache__
3
+ .idea/
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ import numpy as np
4
+ from human_pose_estimator import PoseEstimator
5
+
6
+ from pose_estimator import rect
7
+
8
+ pose_estimator = PoseEstimator("cpu")
9
+
10
+
11
+ def get_box(image):
12
+ image_box, _ = rect(pose_estimator, image)
13
+ return image_box
14
+
15
+
16
+ def predict(img: np.ndarray):
17
+
18
+ poses, _, _ = pose_estimator.get_poses(img, 512)
19
+
20
+ for pose in poses:
21
+ pose.draw(img)
22
+ cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
23
+ (pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
24
+
25
+ return img
26
+
27
+
28
+ footer = r"""
29
+ <center>
30
+ <b>
31
+ Demo for <a href='https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch'>Lightweight OpenPose</a>
32
+ </b>
33
+ </center>
34
+ """
35
+
36
+ with gr.Blocks(title="OpenPose") as app:
37
+ gr.HTML("<center><h1>Human Pose Estimation Pytorch</h1></center>")
38
+ gr.HTML("<center><h3>Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose</h3></center>")
39
+ with gr.Row(equal_height=False):
40
+ with gr.Column():
41
+ input_img = gr.Image(type="numpy", label="Input image")
42
+ # input_img = gr.Video(source="webcam")
43
+ run_btn = gr.Button(variant="primary")
44
+ with gr.Column():
45
+ output_img = gr.Image(type="pil", label="Output image")
46
+ gr.ClearButton(components=[input_img, output_img], variant="stop")
47
+
48
+ run_btn.click(predict, [input_img], [output_img])
49
+
50
+ with gr.Row():
51
+ blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
52
+ examples = gr.Dataset(components=[input_img], samples=blobs)
53
+ examples.click(lambda x: x[0], [examples], [input_img])
54
+
55
+ with gr.Row():
56
+ gr.HTML(footer)
57
+
58
+ app.launch(share=False, debug=True, show_error=True)
59
+ app.queue()
examples/01.jpg ADDED
examples/02.jpg ADDED
examples/03.jpg ADDED
pose_estimator.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from human_pose_estimator.modules.pose import Pose
4
+
5
+
6
+ def rect(estimator, image, height_size=512):
7
+
8
+ num_keypoints = Pose.num_kpts
9
+
10
+ img = cv2.imread(image, cv2.IMREAD_COLOR)
11
+
12
+ _, pose_entries, all_keypoints = estimator.get_poses(img, height_size)
13
+
14
+ rects = []
15
+ for n in range(len(pose_entries)):
16
+ if len(pose_entries[n]) == 0:
17
+ continue
18
+ pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
19
+
20
+ valid_keypoints = []
21
+ for kpt_id in range(num_keypoints):
22
+ if pose_entries[n][kpt_id] != -1.0: # keypoint was found
23
+ pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
24
+ pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
25
+ valid_keypoints.append([pose_keypoints[kpt_id, 0], pose_keypoints[kpt_id, 1]])
26
+ valid_keypoints = np.array(valid_keypoints)
27
+
28
+ if pose_entries[n][10] != -1.0 or pose_entries[n][13] != -1.0:
29
+ pmin = valid_keypoints.min(0)
30
+ pmax = valid_keypoints.max(0)
31
+
32
+ center = (0.5 * (pmax[:2] + pmin[:2])).astype(np.int32)
33
+ radius = int(0.65 * max(pmax[0] - pmin[0], pmax[1] - pmin[1]))
34
+ elif pose_entries[n][10] == -1.0 and pose_entries[n][13] == -1.0 and pose_entries[n][8] != -1.0 and \
35
+ pose_entries[n][11] != -1.0:
36
+ # if leg is missing, use pelvis to get cropping
37
+ center = (0.5 * (pose_keypoints[8] + pose_keypoints[11])).astype(np.int32)
38
+ radius = int(1.45 * np.sqrt(((center[None, :] - valid_keypoints) ** 2).sum(1)).max(0))
39
+ center[1] += int(0.05 * radius)
40
+ else:
41
+ center = np.array([img.shape[1] // 2, img.shape[0] // 2])
42
+ radius = max(img.shape[1] // 2, img.shape[0] // 2)
43
+
44
+ x1 = center[0] - radius
45
+ y1 = center[1] - radius
46
+
47
+ rects.append([x1, y1, 2 * radius, 2 * radius])
48
+
49
+ for (x, y, w, h) in rects:
50
+ cv2.rectangle(img, (x, y),
51
+ (x + w, y + h),
52
+ (0, 0, 255), 2)
53
+
54
+ return img, rects
55
+
requerimets.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch>=1.4.0
2
+ numpy
3
+ opencv-python
4
+ human-pose-estimator