import PIL.Image import PIL.ImageOps import gradio as gr import numpy as np import tensorflow as tf from poser import draw_bones, movenet def predict(image: PIL.Image): input_size = 256 size = (1280, 1280) image = PIL.ImageOps.fit(image, size, PIL.Image.LANCZOS) image_tf = tf.keras.preprocessing.image.img_to_array(image) # Resize and pad the image to keep the aspect ratio and fit the expected size. input_image = tf.expand_dims(image_tf, axis=0) input_image = tf.image.resize_with_pad(input_image, input_size, input_size) keypoints = movenet(input_image) keypoints = np.array(keypoints) image = tf.keras.preprocessing.image.array_to_img(image_tf) draw_bones(image, keypoints) return image footer = r"""
Demo for MoveNet
""" with gr.Blocks(title="MoveNet") as app: gr.HTML("

Human Pose Estimation with MoveNet

") gr.HTML("

MoveNet: Ultra fast and accurate pose detection model

") with gr.Row().style(equal_height=False): with gr.Column(): input_img = gr.Image(type="pil", label="Input image") run_btn = gr.Button(variant="primary") with gr.Column(): output_img = gr.Image(type="numpy", label="Output image") gr.ClearButton(components=[input_img, output_img], variant="stop") run_btn.click(predict, [input_img], [output_img]) with gr.Row(): blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)] examples = gr.Dataset(components=[input_img], samples=blobs) examples.click(lambda x: x[0], [examples], [input_img]) with gr.Row(): gr.HTML(footer) app.launch(share=False, debug=True, show_error=True) app.queue()