File size: 5,782 Bytes
952bab9 1a3227d 952bab9 1a3227d 99c4346 1a3227d 952bab9 1a3227d 99c4346 1a3227d 99c4346 1a3227d 99c4346 1a3227d 952bab9 1a3227d 952bab9 99c4346 952bab9 1a3227d 99c4346 6e907a6 99c4346 1a3227d 952bab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import zipfile
from pathlib import Path
import gradio as gr
from gradio_client import Client
from huggingface_hub import hf_hub_download
clientGFPGAN = Client("leonelhs/GFPGAN")
clientSuperface = Client("leonelhs/superface")
clientZeroScratches = Client("leonelhs/ZeroScratches")
clientDeoldify = Client("leonelhs/deoldify")
clientEnhanceLight = Client("leonelhs/Zero-DCE")
clientZeroBackground = Client("leonelhs/ZeroBackground")
clientFaceParser = Client("leonelhs/faceparser")
REPO_ID = "leonelhs/faceshine"
def download(file):
file_zip = hf_hub_download(repo_id=REPO_ID, filename=file + ".zip")
with zipfile.ZipFile(file_zip, "r") as zip_ref:
zip_ref.extractall(file)
return list(Path(file).iterdir())
def gfpgan_face(image):
return clientGFPGAN.predict(image, "v1.4", "2", api_name="/predict")[1]
def enhance_face(image, upsampler, face_enhancer, scale):
return clientSuperface.predict(image, upsampler, face_enhancer, scale, api_name="/predict")
def zero_scratches(image):
return clientZeroScratches.predict(image, api_name="/predict")
def colorize_photo(image):
return clientDeoldify.predict(image, api_name="/predict")
def enhance_light(image):
return clientEnhanceLight.predict(image, api_name="/predict")
def zero_background(image, new_bgr=None):
return clientZeroBackground.predict(image, new_bgr, api_name="/predict")
def parse_face(image):
return clientFaceParser.predict(image, api_name="/predict")
def mirror(x):
return x
def active_first():
return gr.Tabs.update(selected=0)
footer = r"""
<center>
<p>This App is running on a CPU, help us to upgrade a GPU or just give us a <a href='https://github.com/leonelhs/face-shine' target='_blank'>Github ⭐</a></p>
</br>
<a href="https://www.buymeacoffee.com/leonelhs">
<img src="https://img.buymeacoffee.com/button-api/?text=Buy me a coffee&emoji=&slug=leonelhs&button_colour=FFDD00&font_colour=000000&font_family=Cookie&outline_colour=000000&coffee_colour=ffffff" />
</a>
</center>
</br>
<center><span>[email protected]</span></center>
"""
with gr.Blocks(title="Face Shine") as app:
with gr.Row():
gr.HTML("<center><h1>Face Shine</h1></center>")
with gr.Tabs() as tabs:
with gr.TabItem("Photo restorer", id=0):
with gr.Row():
with gr.Column(scale=1):
btn_hires = gr.Button(value="Enhance resolution")
btn_eraser = gr.Button(value="Erase scratches")
btn_color = gr.Button(value="Colorize photo")
btn_light = gr.Button(value="Enhance light")
with gr.Accordion("New background", open=False):
img_newbgr = gr.Image(label="Left empty for a transparent background", type="filepath")
btn_newbgr = gr.Button(value="Clear background")
with gr.Column(scale=4):
with gr.Row():
img_input = gr.Image(label="Input", type="filepath")
img_output = gr.Image(label="Result", type="filepath", interactive=False)
with gr.Row():
gr.ClearButton([img_input, img_output, img_newbgr], variant="stop")
btn_swap = gr.Button(value="Swap images", variant="primary")
with gr.TabItem("Examples", id=1):
gr.Examples(examples=download("lowres"), inputs=[img_input], label="Low resolution")
gr.Examples(examples=download("gray"), inputs=[img_input], label="Gray scale")
gr.Examples(examples=download("scratch"), inputs=[img_input], label="Scratched")
gr.Examples(examples=download("backs"), inputs=[img_newbgr], label="Backgrounds")
gr.Button(value="Ok", variant="primary").click(active_first, None, tabs)
with gr.TabItem("Settings", id=2):
with gr.Accordion("Image restoration settings", open=False):
restorer = gr.Dropdown([
'RealESRGAN_x2plus',
'RealESRGAN_x4plus',
'RealESRNet_x4plus',
'AI-Forever_x2plus',
'AI-Forever_x4plus',
'RealESRGAN_x4plus_anime_6B',
'realesr-animevideov3',
'realesr-general-x4v3'],
type="value", value='RealESRGAN_x4plus', label='General restoration algorithm', info="version")
enhancer = gr.Dropdown([
'No additional face process',
'GFPGANv1.2',
'GFPGANv1.3',
'GFPGANv1.4',
'RestoreFormer'],
type="value", value='No additional face process', label='Special face restoration algorithm',
info="version")
rescale = gr.Dropdown(["1", "2", "3", "4"], type="value", value="2", label="Rescaling factor")
with gr.Accordion("Logs info", open=False):
text_logger = gr.Textbox(label="login", lines=5, show_label=False)
gr.Button("Save settings")
btn_hires.click(enhance_face, inputs=[img_input, restorer, enhancer, rescale],
outputs=[img_output, text_logger])
btn_eraser.click(zero_scratches, inputs=[img_input], outputs=[img_output])
btn_color.click(colorize_photo, inputs=[img_input], outputs=[img_output])
btn_light.click(enhance_light, inputs=[img_input], outputs=[img_output])
btn_newbgr.click(zero_background, inputs=[img_input, img_newbgr], outputs=[img_output])
btn_swap.click(mirror, inputs=[img_output], outputs=[img_input])
with gr.Row():
gr.HTML(footer)
app.launch(share=False, debug=True, enable_queue=True, show_error=True)
|