Spaces:
Running
Running
File size: 7,055 Bytes
def3395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import torch
import torch.nn as nn
from networks.resnet_GN_WS import ResNet
import networks.layers_WS as L
def build_model(weights):
net_encoder = fba_encoder()
net_decoder = fba_decoder()
model = MattingModule(net_encoder, net_decoder)
if weights != 'default':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sd = torch.load(weights, map_location=device)
model.load_state_dict(sd, strict=True)
return model
class MattingModule(nn.Module):
def __init__(self, net_enc, net_dec):
super(MattingModule, self).__init__()
self.encoder = net_enc
self.decoder = net_dec
def forward(self, image, two_chan_trimap, image_n, trimap_transformed):
resnet_input = torch.cat((image_n, trimap_transformed, two_chan_trimap), 1)
conv_out, indices = self.encoder(resnet_input, return_feature_maps=True)
return self.decoder(conv_out, image, indices, two_chan_trimap)
def fba_encoder():
orig_resnet = ResNet()
net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
num_channels = 3 + 6 + 2
print(f'modifying input layer to accept {num_channels} channels')
net_encoder_sd = net_encoder.state_dict()
conv1_weights = net_encoder_sd['conv1.weight']
c_out, c_in, h, w = conv1_weights.size()
conv1_mod = torch.zeros(c_out, num_channels, h, w)
conv1_mod[:, :3, :, :] = conv1_weights
conv1 = net_encoder.conv1
conv1.in_channels = num_channels
conv1.weight = torch.nn.Parameter(conv1_mod)
net_encoder.conv1 = conv1
net_encoder_sd['conv1.weight'] = conv1_mod
net_encoder.load_state_dict(net_encoder_sd)
return net_encoder
class ResnetDilated(nn.Module):
def __init__(self, orig_resnet, dilate_scale=8):
super(ResnetDilated, self).__init__()
from functools import partial
if dilate_scale == 8:
orig_resnet.layer3.apply(
partial(self._nostride_dilate, dilate=2))
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=4))
elif dilate_scale == 16:
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=2))
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu = orig_resnet.relu
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def _nostride_dilate(self, m, dilate):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
# the convolution with stride
if m.stride == (2, 2):
m.stride = (1, 1)
if m.kernel_size == (3, 3):
m.dilation = (dilate // 2, dilate // 2)
m.padding = (dilate // 2, dilate // 2)
# other convoluions
else:
if m.kernel_size == (3, 3):
m.dilation = (dilate, dilate)
m.padding = (dilate, dilate)
def forward(self, x, return_feature_maps=False):
conv_out = [x]
x = self.relu(self.bn1(self.conv1(x)))
conv_out.append(x)
x, indices = self.maxpool(x)
x = self.layer1(x)
conv_out.append(x)
x = self.layer2(x)
conv_out.append(x)
x = self.layer3(x)
conv_out.append(x)
x = self.layer4(x)
conv_out.append(x)
if return_feature_maps:
return conv_out, indices
return [x]
def fba_fusion(alpha, img, F, B):
F = (alpha * img + (1 - alpha ** 2) * F - alpha * (1 - alpha) * B)
B = ((1 - alpha) * img + (2 * alpha - alpha ** 2) * B - alpha * (1 - alpha) * F)
F = torch.clamp(F, 0, 1)
B = torch.clamp(B, 0, 1)
la = 0.1
alpha = (alpha * la + torch.sum((img - B) * (F - B), 1, keepdim=True)) / (
torch.sum((F - B) * (F - B), 1, keepdim=True) + la)
alpha = torch.clamp(alpha, 0, 1)
return alpha, F, B
class fba_decoder(nn.Module):
def __init__(self):
super(fba_decoder, self).__init__()
pool_scales = (1, 2, 3, 6)
self.ppm = []
for scale in pool_scales:
self.ppm.append(nn.Sequential(
nn.AdaptiveAvgPool2d(scale),
L.Conv2d(2048, 256, kernel_size=1, bias=True),
L.norm(256),
nn.LeakyReLU()
))
self.ppm = nn.ModuleList(self.ppm)
self.conv_up1 = nn.Sequential(
L.Conv2d(2048 + len(pool_scales) * 256, 256,
kernel_size=3, padding=1, bias=True),
L.norm(256),
nn.LeakyReLU(),
L.Conv2d(256, 256, kernel_size=3, padding=1),
L.norm(256),
nn.LeakyReLU()
)
self.conv_up2 = nn.Sequential(
L.Conv2d(256 + 256, 256,
kernel_size=3, padding=1, bias=True),
L.norm(256),
nn.LeakyReLU()
)
self.conv_up3 = nn.Sequential(
L.Conv2d(256 + 64, 64,
kernel_size=3, padding=1, bias=True),
L.norm(64),
nn.LeakyReLU()
)
self.unpool = nn.MaxUnpool2d(2, stride=2)
self.conv_up4 = nn.Sequential(
nn.Conv2d(64 + 3 + 3 + 2, 32,
kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(),
nn.Conv2d(32, 16,
kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(),
nn.Conv2d(16, 7, kernel_size=1, padding=0, bias=True)
)
def forward(self, conv_out, img, indices, two_chan_trimap):
conv5 = conv_out[-1]
input_size = conv5.size()
ppm_out = [conv5]
for pool_scale in self.ppm:
ppm_out.append(nn.functional.interpolate(
pool_scale(conv5),
(input_size[2], input_size[3]),
mode='bilinear', align_corners=False))
ppm_out = torch.cat(ppm_out, 1)
x = self.conv_up1(ppm_out)
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x = torch.cat((x, conv_out[-4]), 1)
x = self.conv_up2(x)
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x = torch.cat((x, conv_out[-5]), 1)
x = self.conv_up3(x)
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x = torch.cat((x, conv_out[-6][:, :3], img, two_chan_trimap), 1)
output = self.conv_up4(x)
alpha = torch.clamp(output[:, 0][:, None], 0, 1)
F = torch.sigmoid(output[:, 1:4])
B = torch.sigmoid(output[:, 4:7])
# FBA Fusion
alpha, F, B = fba_fusion(alpha, img, F, B)
output = torch.cat((alpha, F, B), 1)
return output
|