Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,78 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
images =
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
# Gradio
|
| 38 |
-
|
| 39 |
fn=process_pdf,
|
| 40 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 41 |
outputs="text",
|
| 42 |
-
title="olmOCR PDF
|
|
|
|
| 43 |
)
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|
| 46 |
-
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import base64
|
| 3 |
+
from io import BytesIO
|
| 4 |
from PIL import Image
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 8 |
+
from olmocr.data.renderpdf import render_pdf_to_base64png
|
| 9 |
+
from olmocr.prompts import build_finetuning_prompt
|
| 10 |
+
from olmocr.prompts.anchor import get_anchor_text
|
| 11 |
+
|
| 12 |
+
# Load processor and model
|
| 13 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
| 14 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 15 |
+
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
|
| 16 |
+
).eval()
|
| 17 |
+
|
| 18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
model.to(device)
|
| 20 |
+
|
| 21 |
+
def process_pdf(file, page=1):
|
| 22 |
+
# Save uploaded file to disk
|
| 23 |
+
file_path = file.name
|
| 24 |
+
|
| 25 |
+
# Render the selected PDF page to base64 PNG
|
| 26 |
+
image_base64 = render_pdf_to_base64png(file_path, page, target_longest_image_dim=1024)
|
| 27 |
+
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
| 28 |
+
|
| 29 |
+
# Extract document metadata and build the prompt
|
| 30 |
+
anchor_text = get_anchor_text(file_path, page, pdf_engine="pdfreport", target_length=4000)
|
| 31 |
+
prompt = build_finetuning_prompt(anchor_text)
|
| 32 |
|
| 33 |
+
# Construct chat message
|
| 34 |
+
messages = [
|
| 35 |
+
{
|
| 36 |
+
"role": "user",
|
| 37 |
+
"content": [
|
| 38 |
+
{"type": "text", "text": prompt},
|
| 39 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
| 40 |
+
],
|
| 41 |
+
}
|
| 42 |
+
]
|
| 43 |
|
| 44 |
+
# Tokenize inputs
|
| 45 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 46 |
+
inputs = processor(text=[text], images=[main_image], return_tensors="pt", padding=True)
|
| 47 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 48 |
|
| 49 |
+
# Run model
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
output = model.generate(
|
| 52 |
+
**inputs,
|
| 53 |
+
temperature=0.8,
|
| 54 |
+
max_new_tokens=256,
|
| 55 |
+
num_return_sequences=1,
|
| 56 |
+
do_sample=True,
|
| 57 |
+
)
|
| 58 |
|
| 59 |
+
# Decode
|
| 60 |
+
prompt_len = inputs["input_ids"].shape[1]
|
| 61 |
+
new_tokens = output[:, prompt_len:]
|
| 62 |
+
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
| 63 |
+
return decoded[0]
|
| 64 |
|
| 65 |
+
# Gradio interface
|
| 66 |
+
iface = gr.Interface(
|
| 67 |
fn=process_pdf,
|
| 68 |
+
inputs=[
|
| 69 |
+
gr.File(label="Upload PDF"),
|
| 70 |
+
gr.Number(value=1, label="Page Number"),
|
| 71 |
+
],
|
| 72 |
outputs="text",
|
| 73 |
+
title="olmOCR PDF Text Extractor",
|
| 74 |
+
description="Upload a PDF and select a page to extract text using the olmOCR model.",
|
| 75 |
)
|
| 76 |
|
| 77 |
if __name__ == "__main__":
|
| 78 |
+
iface.launch()
|