Spaces:
Running
Running
| import os | |
| import base64 | |
| import tempfile | |
| from io import BytesIO | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from ebooklib import epub | |
| from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
| from olmocr.data.renderpdf import render_pdf_to_base64png | |
| from olmocr.prompts import build_finetuning_prompt | |
| from olmocr.prompts.anchor import get_anchor_text | |
| # Set Hugging Face and Torch cache to a guaranteed-writable location | |
| cache_dir = "/tmp/huggingface_cache" | |
| os.environ["HF_HOME"] = cache_dir | |
| os.environ["TORCH_HOME"] = cache_dir | |
| os.makedirs(cache_dir, exist_ok=True) | |
| # Load model and processor | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "allenai/olmOCR-7B-0225-preview", | |
| torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| ).eval().to(device) | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
| def ocr_page(pdf_path, page_num): | |
| image_b64 = render_pdf_to_base64png(pdf_path, page_num + 1, target_longest_image_dim=1024) | |
| anchor_text = get_anchor_text(pdf_path, page_num + 1, pdf_engine="pdfreport", target_length=4000) | |
| prompt = build_finetuning_prompt(anchor_text) | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": prompt}, | |
| {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}} | |
| ], | |
| }] | |
| prompt_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| main_image = Image.open(BytesIO(base64.b64decode(image_b64))) | |
| inputs = processor(text=[prompt_text], images=[main_image], return_tensors="pt", padding=True) | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| temperature=0.8, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| ) | |
| prompt_len = inputs["input_ids"].shape[1] | |
| new_tokens = outputs[:, prompt_len:] | |
| decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
| return decoded[0] if decoded else "" | |
| def convert_pdf_to_epub(pdf_file, title, author, language): | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf: | |
| tmp_pdf.write(pdf_file.read()) | |
| tmp_pdf_path = tmp_pdf.name | |
| reader = PdfReader(tmp_pdf_path) | |
| num_pages = len(reader.pages) | |
| book = epub.EpubBook() | |
| book.set_title(title) | |
| book.add_author(author) | |
| book.set_language(language) | |
| # Set cover from page 1 | |
| cover_image_b64 = render_pdf_to_base64png(tmp_pdf_path, 1, target_longest_image_dim=1024) | |
| cover_image_bytes = base64.b64decode(cover_image_b64) | |
| book.set_cover("cover.jpg", cover_image_bytes) | |
| # Add OCR'd pages as chapters | |
| for i in range(num_pages): | |
| text = ocr_page(tmp_pdf_path, i) | |
| chapter = epub.EpubHtml(title=f"Page {i+1}", file_name=f"page_{i+1}.xhtml", lang=language) | |
| chapter.content = f"<h1>Page {i+1}</h1><p>{text}</p>" | |
| book.add_item(chapter) | |
| book.spine.append(chapter) | |
| # Finalize EPUB | |
| book.add_item(epub.EpubNcx()) | |
| book.add_item(epub.EpubNav()) | |
| epub_path = os.path.join(tempfile.gettempdir(), "output.epub") | |
| epub.write_epub(epub_path, book, {}) | |
| with open(epub_path, "rb") as f: | |
| return epub_path, f.read() | |
| def interface_fn(pdf, title, author, language): | |
| epub_path, _ = convert_pdf_to_epub(pdf, title, author, language) | |
| return epub_path | |
| demo = gr.Interface( | |
| fn=interface_fn, | |
| inputs=[ | |
| gr.File(label="Upload PDF", file_types=[".pdf"]), | |
| gr.Textbox(label="EPUB Title", placeholder="e.g. Understanding AI"), | |
| gr.Textbox(label="Author", placeholder="e.g. Allen AI"), | |
| gr.Textbox(label="Language", placeholder="e.g. en", value="en"), | |
| ], | |
| outputs=gr.File(label="Download EPUB"), | |
| title="PDF to EPUB Converter (olmOCR)", | |
| description="Upload a PDF to convert it into a structured EPUB. The first page is used as the cover. OCR is performed with the olmOCR model.", | |
| allow_flagging="never", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |