Spaces:
Sleeping
Sleeping
| # set path | |
| import glob, os, sys; | |
| sys.path.append('../utils') | |
| #import needed libraries | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| import streamlit as st | |
| from utils.target_classifier import load_targetClassifier, target_classification | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| from utils.config import get_classifier_params | |
| from utils.preprocessing import paraLengthCheck | |
| from io import BytesIO | |
| import xlsxwriter | |
| import plotly.express as px | |
| from utils.target_classifier import label_dict | |
| # Declare all the necessary variables | |
| classifier_identifier = 'target' | |
| params = get_classifier_params(classifier_identifier) | |
| def to_excel(df,sectorlist): | |
| len_df = len(df) | |
| output = BytesIO() | |
| writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
| df.to_excel(writer, index=False, sheet_name='Sheet1') | |
| workbook = writer.book | |
| worksheet = writer.sheets['Sheet1'] | |
| worksheet.data_validation('S2:S{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': ['No', 'Yes', 'Discard']}) | |
| worksheet.data_validation('X2:X{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('T2:T{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('U2:U{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('V2:V{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('W2:U{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| writer.save() | |
| processed_data = output.getvalue() | |
| return processed_data | |
| def app(): | |
| ### Main app code ### | |
| with st.container(): | |
| if 'key1' in st.session_state: | |
| # Load the existing dataset | |
| df = st.session_state.key1 | |
| st.write("This is key 1 - utils") | |
| st.write(df.head()) | |
| # Load the classifier model | |
| classifier = load_targetClassifier(classifier_name=params['model_name']) | |
| st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
| # test | |
| if "target_classifier" not in st.session_state: | |
| st.write("target classifier not saved :(") | |
| df = target_classification(haystack_doc=df, | |
| threshold= params['threshold']) | |
| st.write("This is the second part") | |
| st.write(df) | |
| st.session_state.key1 = df | |
| def target_display(): | |
| # Assign dataframe a name | |
| df = st.session_state['key1'] | |
| st.write(df) | |