Spaces:
Runtime error
Runtime error
| from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline | |
| import numpy as np | |
| import tensorflow as tf | |
| import gradio as gr | |
| import openai | |
| model_path = "leadingbridge/sentiment-analysis" | |
| tokenizer = BertTokenizerFast.from_pretrained(model_path) | |
| model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} ) | |
| def sentiment_analysis(text): | |
| pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) | |
| result = pipe(text) | |
| return result | |
| def openai_chatbot(prompt): | |
| # Set up the OpenAI API client | |
| openai.api_key = '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' | |
| # Set up the model and prompt | |
| model_engine = "text-davinci-003" | |
| # Generate a response | |
| completion = openai.Completion.create( | |
| engine=model_engine, | |
| prompt=prompt, | |
| max_tokens=1024, | |
| n=1, | |
| stop=None, | |
| temperature=0.5, | |
| ) | |
| response = completion.choices[0].text | |
| return f'π€ {response}' | |
| with gr.Blocks() as demo: | |
| gr.Markdown("Choose the Chinese NLP model you want to use.") | |
| with gr.Tab("Sentiment Analysis"): | |
| text_button = gr.Button("proceed") | |
| text_button.click(fn=sentiment_analysis,inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."), | |
| outputs=gr.Textbox(label="Sentiment Analysis")) | |
| with gr.Tab("General Chatbot"): | |
| text_button = gr.Button("proceed") | |
| text_button.click(fn=openai_chatbot,inputs=gr.Textbox(placeholder="Enter any topic you would like to discuss in Chinese"), | |
| outputs=gr.Textbox(label="Chatbot Response")) | |
| demo.launch(inline=False) |