Spaces:
Runtime error
Runtime error
from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline | |
import numpy as np | |
import tensorflow as tf | |
import gradio as gr | |
import openai | |
model_path = "leadingbridge/sentiment-analysis" | |
tokenizer = BertTokenizerFast.from_pretrained(model_path) | |
model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} ) | |
def sentiment_analysis(text): | |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) | |
result = pipe(text) | |
return result | |
def openai_chatbot(prompt): | |
# Set up the OpenAI API client | |
openai.api_key = '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' | |
# Set up the model and prompt | |
model_engine = "text-davinci-003" | |
# Generate a response | |
completion = openai.Completion.create( | |
engine=model_engine, | |
prompt=prompt, | |
max_tokens=1024, | |
n=1, | |
stop=None, | |
temperature=0.5, | |
) | |
response = completion.choices[0].text | |
return f'π€ {response}' | |
with gr.Blocks() as demo: | |
gr.Markdown("Choose the Chinese NLP model you want to use.") | |
with gr.Tab("Sentiment Analysis"): | |
text_button = gr.Button("proceed") | |
text_button.click(fn=sentiment_analysis,inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."), | |
outputs=gr.Textbox(label="Sentiment Analysis")) | |
with gr.Tab("General Chatbot"): | |
text_button = gr.Button("proceed") | |
text_button.click(fn=openai_chatbot,inputs=gr.Textbox(placeholder="Enter any topic you would like to discuss in Chinese"), | |
outputs=gr.Textbox(label="Chatbot Response")) | |
demo.launch(inline=False) |