Update dcgan_64.py
Browse files- dcgan_64.py +1 -10
dcgan_64.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import torch.nn as nn
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
class dcgan_conv(nn.Module):
|
|
@@ -95,10 +96,6 @@ class decoder_woSkip(nn.Module):
|
|
| 95 |
return output
|
| 96 |
|
| 97 |
|
| 98 |
-
"""
|
| 99 |
-
# Using Convolution and up_resize as the block to up-sample
|
| 100 |
-
"""
|
| 101 |
-
import torch.nn.functional as F
|
| 102 |
class upconv(nn.Module):
|
| 103 |
def __init__(self, nc_in, nc_out):
|
| 104 |
super().__init__()
|
|
@@ -119,15 +116,10 @@ class decoder_conv(nn.Module):
|
|
| 119 |
nn.ConvTranspose2d(dim, nf * 8, 4, 1, 0),
|
| 120 |
nn.BatchNorm2d(nf * 8),
|
| 121 |
nn.ReLU(),
|
| 122 |
-
# state size. (nf*8) x 4 x 4
|
| 123 |
upconv(nf * 8, nf * 4),
|
| 124 |
-
# state size. (nf*4) x 8 x 8
|
| 125 |
upconv(nf * 4, nf * 2),
|
| 126 |
-
# state size. (nf*2) x 16 x 16
|
| 127 |
upconv(nf * 2, nf * 2),
|
| 128 |
-
# state size. (nf*2) x 32 x 32
|
| 129 |
upconv(nf * 2, nf),
|
| 130 |
-
# state size. (nf) x 64 x 64
|
| 131 |
nn.Conv2d(nf, nc, 1, 1, 0),
|
| 132 |
nn.Sigmoid()
|
| 133 |
)
|
|
@@ -136,5 +128,4 @@ class decoder_conv(nn.Module):
|
|
| 136 |
def forward(self, input):
|
| 137 |
output = self.main(input.view(-1, self.dim, 1, 1))
|
| 138 |
output = output.view(input.shape[0], input.shape[1], output.shape[1], output.shape[2], output.shape[3])
|
| 139 |
-
|
| 140 |
return output
|
|
|
|
| 1 |
import torch.nn as nn
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
|
| 4 |
|
| 5 |
class dcgan_conv(nn.Module):
|
|
|
|
| 96 |
return output
|
| 97 |
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
class upconv(nn.Module):
|
| 100 |
def __init__(self, nc_in, nc_out):
|
| 101 |
super().__init__()
|
|
|
|
| 116 |
nn.ConvTranspose2d(dim, nf * 8, 4, 1, 0),
|
| 117 |
nn.BatchNorm2d(nf * 8),
|
| 118 |
nn.ReLU(),
|
|
|
|
| 119 |
upconv(nf * 8, nf * 4),
|
|
|
|
| 120 |
upconv(nf * 4, nf * 2),
|
|
|
|
| 121 |
upconv(nf * 2, nf * 2),
|
|
|
|
| 122 |
upconv(nf * 2, nf),
|
|
|
|
| 123 |
nn.Conv2d(nf, nc, 1, 1, 0),
|
| 124 |
nn.Sigmoid()
|
| 125 |
)
|
|
|
|
| 128 |
def forward(self, input):
|
| 129 |
output = self.main(input.view(-1, self.dim, 1, 1))
|
| 130 |
output = output.view(input.shape[0], input.shape[1], output.shape[1], output.shape[2], output.shape[3])
|
|
|
|
| 131 |
return output
|