File size: 5,234 Bytes
2f23f07
c2966ec
d5f2bf5
 
2f23f07
b5c625b
d63c6cd
d2bf1cc
d5f2bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
b5c625b
 
 
 
 
 
 
 
94b65fc
b5c625b
 
94b65fc
b5c625b
 
2ba277c
 
 
 
 
03888cd
2ba277c
 
0e9f0b7
1e99cb9
af62f38
1e99cb9
5a70ae3
1e99cb9
 
5a70ae3
 
 
 
 
ef99204
 
5a70ae3
 
 
ef99204
 
5a70ae3
 
 
 
2f23f07
5a70ae3
 
2f23f07
b5c625b
2f23f07
af62f38
e5456b5
af62f38
 
e5456b5
 
 
 
 
 
 
 
 
 
 
 
 
 
c240920
 
 
e5456b5
 
af62f38
 
7633d89
af62f38
57c1f2b
d5f2bf5
e174116
2bc17ff
136c53f
c082871
5a70ae3
6ee80eb
95ec167
2c43fbf
2ba90cf
5a70ae3
6ee80eb
e5456b5
 
60e9bf1
c082871
136c53f
af62f38
 
136c53f
5490d43
ab34b0c
7654258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import numpy as np
import torch
from torch import nn
import imageio
import cv2


class Generator(nn.Module):
    # Refer to the link below for explanations about nc, nz, and ngf
    # https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html#inputs
    def __init__(self, nc=4, nz=100, ngf=64):
        super(Generator, self).__init__()
        self.network = nn.Sequential(
            nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh(),
        )

    def forward(self, input):
        output = self.network(input)
        return output


def display_gif(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        images.append(imageio.imread(image_filename))

    gif_filename = 'avatar_source.gif'
    return imageio.mimsave(gif_filename, images)


def display_gif_pad(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        image = image[:, :, :3]
        image_pad = cv2.copyMakeBorder(image, 0, 0, 125, 125, cv2.BORDER_CONSTANT, value=0)
        images.append(image_pad)

    return imageio.mimsave(save_name, images)
    

def display_image(file_name):

    image_filename = file_name + '0' + '.png'
    print(image_filename)
    image = imageio.imread(image_filename)
    imageio.imwrite('image.png', image)
    

def run(domain_source, action_source, hair_source, top_source, bottom_source, domain_target, action_target, hair_target, top_target, bottom_target):

    # == Source Avatar ==
    # body
    body_source = '0'
    
    # hair
    if hair_source == "green": hair_source = '0'
    elif hair_source == "yellow": hair_source = '2'
    elif hair_source == "rose": hair_source = '4'
    elif hair_source == "red": hair_source = '7'
    elif hair_source == "wine": hair_source = '8'
    
    # top
    if top_source == "brown": top_source = '0'
    elif top_source == "blue": top_source = '1'
    elif top_source == "white": top_source = '2'
    
    # bottom
    if bottom_source == "white": bottom_source = '0'
    elif bottom_source == "golden": bottom_source = '1'
    elif bottom_source == "red": bottom_source = '2'
    elif bottom_source == "silver": bottom_source = '3'
    
    file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
    file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
    
    gif = display_gif_pad(file_name_source, 'avatar_source.gif')
    
    # == Target Avatar ==
    # body
    body_target = '1'
    
    # hair
    if hair_target == "violet": hair_target = '1'
    elif hair_target == "silver": hair_target = '3'
    elif hair_target == "purple": hair_target = '5'
    elif hair_target == "grey": hair_target = '6'
    elif hair_target == "golden": hair_target = '9'
    
    # top
    if top_target == "grey": top_target = '3'
    elif top_target == "khaki": top_target = '4'
    elif top_target == "linen": top_target = '5'
    elif top_target == "ocre": top_target = '6'
    
    # bottom
    if bottom_target == "denim": bottom_target = '4'
    elif bottom_target == "olive": bottom_target = '5'
    elif bottom_target == "brown": bottom_target = '6'
    
    file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
    file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
    
    gif_target = display_gif_pad(file_name_target, 'avatar_target.gif')
    
    return 'demo.gif', 'avatar_target.gif'


gr.Interface(
    run,
    inputs=[
        gr.Textbox(value="Source Avatar - Human", interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
        gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
        gr.Radio(choices=["brown", "blue", "white"], value="brown"),
        gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
        gr.Textbox(value="Target Avatar - Alien", interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
        gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
        gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
        gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
    ],
    outputs=[
        gr.components.Image(type="file", label="Source Avatar (Costumed by You)"),
        gr.components.Image(type="file", label="Target Avatar (Randomly Chosen)"),
    ],
    live=True,
    title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()