File size: 3,218 Bytes
c2f1466
722ab73
c2f1466
 
 
40641cd
cf7a07e
da9b438
7192ffe
da9b438
464280b
e846f7d
c2f1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ef829
0ab0bec
12ef829
9ce2a22
12ef829
0ab0bec
12ef829
c2f1466
 
da9b438
6392832
6b65fd5
447a98e
6b65fd5
 
d6a0df6
6b65fd5
95f3d09
c2f1466
 
0ab0bec
c2f1466
4d99237
ea3158a
6249f63
ea3158a
0ab0bec
bde0dee
c2f1466
 
12ef829
 
c2f1466
 
 
 
4d99237
6b65fd5
c2f1466
 
 
5be15aa
 
3104338
5be15aa
 
6872135
c1f0168
5be15aa
 
 
3104338
5be15aa
 
3104338
5be15aa
 
 
3104338
5be15aa
 
3104338
8e3af47
d01b6f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
from aiogoogletrans import Translator 

import requests, os, re, asyncio

loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url'))
translator = Translator()
# Monkey patch
def get_types(cls_set: List[Type], component: str):
    docset = []
    types = []
    if component == "input":
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[1].split(":")[-1])
            types.append(doc_lines[1].split(")")[0].split("(")[-1])
    else:
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[-1].split(":")[-1])
            types.append(doc_lines[-1].split(")")[0].split("(")[-1])
    return docset, types
routes.get_types = get_types

def cut(prom, out):
    output = out[len(prom)-1:]
    output = output.split('<|endoftext|>')[0]
    output = output.split('\n')[0]
    output = re.sub('[=+#/\:@*\"β€»γ†γ€β€˜|\\\<\>\(\)\[\]`\'…》\”\β€œ\’·]', ' ', output)
    outout = output.replace("ν•˜ν•˜", "γ…Žγ…Ž")
    return output
# App code
def mbti(x):
    t = loop.run_until_complete(translator.translate(x, src='ko', dest='en'))
    str_trans = re.sub('[-=+,#/\?:^.@*\"β€»~ㆍ!γ€β€˜|\(\)\[\]`\'…》\”\β€œ\’·]', '', t.text)
    result = gradio_client.predict(
				str_trans,	# str representing input in 'User input' Textbox component
				fn_index=2
    )
    r = sorted(eval(result), key=lambda x : x['score'], reverse=True)
    
    return r
    
def chat(x):
    x = f"[λ„ˆλŠ” μ§ˆλ¬Έν•˜κΈ°λ₯Ό μ’‹μ•„ν•΄. λ„ˆλŠ” 긍정적이고 곡감을 μž˜ν•˜λŠ” 성격이야. μ§€κΈˆ λ„ˆλŠ” μΉœκ΅¬μ™€ λŒ€ν™”ν•˜κ³  μžˆμ–΄. λ‹¨κ³„λ³„λ‘œ μƒκ°ν•΄μ„œ μžμ—°μŠ€λŸ½κ²Œ λŒ€λ‹΅ν•΄μ€˜.] {x}"
    result = gradio_client.predict(
        x,# str representing input in 'User input' Textbox component
		0.91,	# float, representing input in 'Top-p (nucleus sampling)' Slider component
		50,	    # int, representing input in 'Top-k (nucleus sampling)' Slider component
		0.8,	# float, representing input in 'Temperature' Slider component
		25,	    # int, representing input in 'Max New Tokens' Slider component
		1.1,	# float, representing input in 'repetition_penalty' Slider component
		fn_index=0
    )
    result = cut(x, result)
    
    return result

def yn(x):
    result = gradio_client.predict(
				x,	# str representing input in 'User input' Textbox component
				fn_index=1
    )
    return result

with gr.Blocks() as demo:
    aa = gr.Interface(
      fn=chat,
      inputs="text",
      outputs="text",
      description="chat",
    examples= [["\nfriend: λ„ˆλŠ” 꿈이 뭐야? \n\n### \nyou: "],["\nyou: λ„ˆλŠ” 무슨 색을 κ°€μž₯ μ’‹μ•„ν•΄? \nfriend: κΈ€μŽ„ λ„ˆλŠ”? \n\n### \nyou: "]]
    )
    
    bb = gr.Interface(
      fn=mbti,
      inputs="text",
      outputs="text",
      description="mbti"
    )
    
    cc = gr.Interface(
      fn=yn,
      inputs="text",
      outputs="text",
      description="yn"
    )
    demo.queue(max_size=32).launch(enable_queue=True)