File size: 10,699 Bytes
4b7cafe
2caab98
4b7cafe
 
 
 
 
 
 
 
 
 
 
 
2caab98
 
 
42efc58
 
 
ab29248
4b7cafe
 
 
 
 
a419b5d
 
 
 
d0dbb47
a419b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7359cd
4b7cafe
5568b10
4b7cafe
 
42efc58
4b7cafe
d44468c
4b7cafe
 
 
 
42efc58
4b7cafe
 
 
 
 
 
 
42efc58
913109b
4b7cafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42efc58
d44468c
 
 
 
 
 
 
 
4b7cafe
 
 
913109b
 
 
 
 
 
 
 
 
4b7cafe
913109b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7cafe
 
 
913109b
 
 
 
 
d0dbb47
 
7d66b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0dbb47
4b7cafe
d0dbb47
4b7cafe
d44468c
 
4b7cafe
 
 
 
 
 
d0dbb47
4b7cafe
 
 
d0dbb47
4b7cafe
 
 
d0dbb47
4b7cafe
 
 
 
 
42efc58
4b7cafe
42efc58
4b7cafe
42efc58
4b7cafe
 
 
 
 
913109b
 
 
 
4b7cafe
913109b
d44468c
 
4b7cafe
913109b
 
4b7cafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44468c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from threading import Thread
from huggingface_hub import hf_hub_download
import torch
import gradio as gr
import re
import asyncio
import requests
import shutil
from langchain import PromptTemplate, LLMChain
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.chains import RetrievalQA
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain.llms import OpenAI

llm = OpenAI(model_name='gpt-3.5-turbo-instruct')

torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())

loader = PyPDFLoader("total.pdf")
pages = loader.load()

# 데이터λ₯Ό λΆˆλŸ¬μ™€μ„œ ν…μŠ€νŠΈλ₯Ό μΌμ •ν•œ 수둜 λ‚˜λˆ„κ³  κ΅¬λΆ„μžλ‘œ μ—°κ²°ν•˜λŠ” μž‘μ—…
text_splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=0)
texts = text_splitter.split_documents(pages)

print(f"λ¬Έμ„œμ— {len(texts)}개의 λ¬Έμ„œλ₯Ό 가지고 μžˆμŠ΅λ‹ˆλ‹€.")

# μž„λ² λ”© λͺ¨λΈ λ‘œλ“œ
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")

# λ¬Έμ„œμ— μžˆλŠ” ν…μŠ€νŠΈλ₯Ό μž„λ² λ”©ν•˜κ³  FAISS 에 인덱슀λ₯Ό ꡬ좕함
index = FAISS.from_documents(
	documents=texts,
	embedding=embeddings,
	)

# faiss_db 둜 λ‘œμ»¬μ— μ €μž₯ν•˜κΈ°
index.save_local("")

# faiss_db 둜 λ‘œμ»¬μ— λ‘œλ“œν•˜κΈ°
docsearch = FAISS.load_local("", embeddings)

embeddings_filter = EmbeddingsFilter(
    embeddings=embeddings,
    similarity_threshold=0.7,
    k = 3,
)
# μ••μΆ• 검색기 생성
compression_retriever = ContextualCompressionRetriever(
	# embeddings_filter μ„€μ •
    base_compressor=embeddings_filter,
    # retriever λ₯Ό ν˜ΈμΆœν•˜μ—¬ 검색쿼리와 μœ μ‚¬ν•œ ν…μŠ€νŠΈλ₯Ό 찾음
    base_retriever=docsearch.as_retriever()
)


id_list = []
history = []
customer_data_list = []
customer_agree_list = []
context = "{context}"
question = "{question}"

def gen(x, id, customer_data):

    index = 0
    matched = 0
    count = 0
    for s in id_list:
        if s == id:
            matched = 1
            break;
        index += 1

    if matched == 0:
        index = len(id_list)
        id_list.append(id)
        customer_data_list.append(customer_data)
        if x != "μ•½κ΄€λ™μ˜_λ™μ˜ν•¨":
            customer_agree_list.append("No")
            history.append('상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n')
            bot_str = "* ν˜„μž¬ κ°€μž…μ •λ³΄λ₯Ό μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€. λ¨Όμ € κ°œμΈμ •λ³΄ 이용 약관에 λ™μ˜ν•˜μ…”μ•Ό μ›ν™œν•œ 상담을 진행할 수 μžˆμŠ΅λ‹ˆλ‹€. \n무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?"
        else:
            customer_agree_list.append("Yes")
            history.append('상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n')
            bot_str = f"κ°œμΈμ •λ³΄ ν™œμš©μ— λ™μ˜ν•˜μ…¨μŠ΅λ‹ˆλ‹€. κ°€μž… λ³΄ν—˜μ„ μ‘°νšŒν•©λ‹ˆλ‹€.\n\nν˜„μž¬ κ³ κ°λ‹˜κ»˜μ„œ κ°€μž…λœ λ³΄ν—˜μ€ {customer_data}μž…λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
        return bot_str
    else:
        if x == "μ΄ˆκΈ°ν™”":
            if customer_agree_list[index] != "No":
                customer_data_list[index] = customer_data
                bot_str = f"λŒ€ν™”κΈ°λ‘μ΄ λͺ¨λ‘ μ΄ˆκΈ°ν™”λ˜μ—ˆμŠ΅λ‹ˆλ‹€.\n\nν˜„μž¬ κ³ κ°λ‹˜κ»˜μ„œ κ°€μž…λœ λ³΄ν—˜μ€ {customer_data}μž…λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
            else:
                customer_data_list[index] = "κ°€μž…μ •λ³΄μ—†μŒ"
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                bot_str = f"λŒ€ν™”κΈ°λ‘μ΄ λͺ¨λ‘ μ΄ˆκΈ°ν™”λ˜μ—ˆμŠ΅λ‹ˆλ‹€.\n\n* ν˜„μž¬ κ°€μž…μ •λ³΄λ₯Ό μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€. λ¨Όμ € κ°œμΈμ •λ³΄ 이용 약관에 λ™μ˜ν•˜μ…”μ•Ό μ›ν™œν•œ 상담을 진행할 수 μžˆμŠ΅λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
        elif x == "κ°€μž…μ •λ³΄":
            if customer_agree_list[index] == "No":
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                bot_str = f"* ν˜„μž¬ κ°€μž…μ •λ³΄λ₯Ό μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€. λ¨Όμ € κ°œμΈμ •λ³΄ 이용 약관에 λ™μ˜ν•˜μ…”μ•Ό μ›ν™œν•œ 상담을 진행할 수 μžˆμŠ΅λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
            else:
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                bot_str = f"ν˜„μž¬ κ³ κ°λ‹˜κ»˜μ„œ κ°€μž…λœ λ³΄ν—˜μ€ {customer_data_list[index]}μž…λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
        elif x == "μ•½κ΄€λ™μ˜_λ™μ˜ν•¨":
            if customer_agree_list[index] == "No":
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                customer_agree_list[index] = "Yes"
                customer_data_list[index] = customer_data
                bot_str = f"κ°œμΈμ •λ³΄ ν™œμš©μ— λ™μ˜ν•˜μ…¨μŠ΅λ‹ˆλ‹€. κ°€μž… λ³΄ν—˜μ„ μ‘°νšŒν•©λ‹ˆλ‹€.\n\nν˜„μž¬ κ³ κ°λ‹˜κ»˜μ„œ κ°€μž…λœ λ³΄ν—˜μ€ {customer_data}μž…λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
            else:
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                bot_str = f"이미 약관에 λ™μ˜ν•˜μ…¨μŠ΅λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
        elif x == "μ•½κ΄€λ™μ˜_λ™μ˜μ•ˆν•¨":
            if customer_agree_list[index] == "Yes":
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                customer_agree_list[index] = "No"
                customer_data_list[index] = "κ°€μž…μ •λ³΄μ—†μŒ"
                bot_str = f"* κ°œμΈμ •λ³΄ ν™œμš© λ™μ˜λ₯Ό μ·¨μ†Œν•˜μ…¨μŠ΅λ‹ˆλ‹€. 이제 κ°€μž… λ³΄ν—˜μ„ μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€.\n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
            else:
                history[index] = '상담원:무엇을 λ„μ™€λ“œλ¦΄κΉŒμš”?\n'
                bot_str = f"* κ°œμΈμ •λ³΄ ν™œμš©μ„ κ±°μ ˆν•˜μ…¨μŠ΅λ‹ˆλ‹€. κ°€μž… λ³΄ν—˜μ„ μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€. \n\nκΆκΈˆν•˜μ‹  것이 μžˆμœΌμ‹ κ°€μš”?"
                return bot_str
        else:
            context = "{context}"
            question = "{question}"
            if customer_agree_list[index] == "No":
                customer_data_newline = "ν˜„μž¬ κ°€μž…μ •λ³΄λ₯Ό μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€. μ•½κ΄€ λ™μ˜κ°€ ν•„μš”ν•˜λ‹€κ³  μ•ˆλ‚΄ν•΄μ£Όμ„Έμš”."
            else:
                customer_data_newline = customer_data_list[index].replace(",","\n")
            prompt_template = f"""당신은 λ³΄ν—˜ μƒλ‹΄μ›μž…λ‹ˆλ‹€. μ•„λž˜μ— 질문과 κ΄€λ ¨λœ μ•½κ΄€ 정보, 응닡 지침과 고객의 λ³΄ν—˜ κ°€μž… 정보, 고객과의 상담기둝이 μ£Όμ–΄μ§‘λ‹ˆλ‹€. μš”μ²­μ„ 적절히 μ™„λ£Œν•˜λŠ” 응닡을 μž‘μ„±ν•˜μ„Έμš”.

[전체 λ³΄ν—˜ λͺ©λ‘]
λΌμ΄ν”„ν”Œλž˜λ‹›μ •κΈ°λ³΄ν—˜β…‘
λΌμ΄ν”„ν”Œλž˜λ‹›μ’…μ‹ λ³΄ν—˜
λΌμ΄ν”„ν”Œλž˜λ‹›μƒν•΄λ³΄ν—˜
λ§ŒκΈ°κΉŒμ§€λΉ„κ°±μ‹ μ•”λ³΄ν—˜β…‘
λΌμ΄ν”„ν”Œλž˜λ‹›μ•”λ³΄ν—˜β…’
μ•”Β·λ‡ŒΒ·μ‹¬μž₯κ±΄κ°•λ³΄ν—˜
λ‡ŒΒ·μ‹¬μž₯κ±΄κ°•λ³΄ν—˜
μ—¬μ„±κ±΄κ°•λ³΄ν—˜
κ±΄κ°•μΉ˜μ•„λ³΄ν—˜
μž…μ›λΉ„λ³΄ν—˜
μˆ˜μˆ λΉ„λ³΄ν—˜
λΌμ΄ν”„ν”Œλž˜λ‹›ν”ŒλŸ¬μŠ€μ–΄λ¦°μ΄λ³΄ν—˜β…‘
λΌμ΄ν”„ν”Œλž˜λ‹›ν”ŒλŸ¬μŠ€μ–΄λ¦°μ΄μ’…ν•©λ³΄ν—˜
λΌμ΄ν”„ν”Œλž˜λ‹›μ—λ“€μΌ€μ–΄μ €μΆ•λ³΄ν—˜β…‘
λΌμ΄ν”„ν”Œλž˜λ‹›μ—°κΈˆμ €μΆ•λ³΄ν—˜β…‘
1λ…„λΆ€ν„°μ €μΆ•λ³΄ν—˜
λΌμ΄ν”„ν”Œλž˜λ‹›μ—°κΈˆλ³΄ν—˜β…‘

{context}

### λͺ…λ Ήμ–΄:
λ‹€μŒ 지침을 μ°Έκ³ ν•˜μ—¬ μƒλ‹΄μ›μœΌλ‘œμ„œ κ³ κ°μ—κ²Œ ν•„μš”ν•œ 응닡을 μ΅œλŒ€ν•œ μžμ„Έν•˜κ²Œ μ œκ³΅ν•˜μ„Έμš”.

[지침]
1.고객의 κ°€μž… 정보λ₯Ό κΌ­ ν™•μΈν•˜μ—¬ 고객이 κ°€μž…ν•œ λ³΄ν—˜μ— λŒ€ν•œ λ‚΄μš©λ§Œ μ œκ³΅ν•˜μ„Έμš”.
2.고객이 κ°€μž…ν•œ λ³΄ν—˜μ΄λΌλ©΄ 고객의 μ§ˆλ¬Έμ— λŒ€ν•΄ 적절히 λ‹΅λ³€ν•˜μ„Έμš”.
3.고객이 κ°€μž…ν•˜μ§€ μ•Šμ€ λ³΄ν—˜μ˜ 보상에 κ΄€ν•œ μ§ˆλ¬Έμ€ κ΄€λ ¨ λ³΄ν—˜μ„ μ†Œκ°œν•˜λ©° 보상이 λΆˆκ°€λŠ₯ν•˜λ‹€λŠ” 점을 μ•ˆλ‚΄ν•˜μ„Έμš”.
4.고객이 κ°€μž…ν•˜μ§€ μ•Šμ€ λ³΄ν—˜μ€ κ°€μž…μ΄ ν•„μš”ν•˜λ‹€κ³  λ³΄ν—˜λͺ…을 ν™•μ‹€ν•˜κ²Œ μ–ΈκΈ‰ν•˜μ„Έμš”.
λ‹€μŒ μž…λ ₯에 μ£Όμ–΄μ§€λŠ” 고객의 λ³΄ν—˜ κ°€μž… 정보와 상담 기둝을 보고 κ³ κ°μ—κ²Œ λ„μ›€λ˜λŠ” 정보λ₯Ό μ œκ³΅ν•˜μ„Έμš”. μ°¨κ·Όμ°¨κ·Ό μƒκ°ν•˜μ—¬ λ‹΅λ³€ν•˜μ„Έμš”. 당신은 잘 ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

### μž…λ ₯:
[고객의 κ°€μž… 정보]
{customer_data_newline}

[상담 기둝]
{history[index]}
고객:{question}

### 응닡:
"""

            # RetrievalQA 클래슀의 from_chain_typeμ΄λΌλŠ” 클래슀 λ©”μ„œλ“œλ₯Ό ν˜ΈμΆœν•˜μ—¬ μ§ˆμ˜μ‘λ‹΅ 객체λ₯Ό 생성
            qa = RetrievalQA.from_chain_type(
              llm=llm,
              chain_type="stuff",
              retriever=compression_retriever,
              return_source_documents=False,
              verbose=True,
              chain_type_kwargs={"prompt": PromptTemplate(
                  input_variables=["context","question"],
                  template=prompt_template,
              )},
            )
            if customer_agree_list[index] == "No":
                query=f"{x}"
            else:
                query=f"{customer_data_list[index]}, {x}"
            response = qa({"query":query})
            output_str = response['result'].rsplit(".")[0] + "."
            if output_str.split(":")[0]=="상담원":
                output_str = output_str.split(":")[1]
            history[index] += f"고객:{x}\n상담원:{output_str}\n"
            if customer_agree_list[index] == "No":
                output_str = f"* ν˜„μž¬ κ°€μž…μ •λ³΄λ₯Ό μ‘°νšŒν•  수 μ—†μŠ΅λ‹ˆλ‹€. λ¨Όμ € κ°œμΈμ •λ³΄ 이용 약관에 λ™μ˜ν•˜μ…”μ•Ό μ›ν™œν•œ 상담을 진행할 수 μžˆμŠ΅λ‹ˆλ‹€." + output_str
            return output_str
def reset_textbox():
    return gr.update(value='')
with gr.Blocks() as demo:
    gr.Markdown(
       "duplicated from beomi/KoRWKV-1.5B, baseModel:Llama-2-ko-7B-chat-gguf-q4_0"
    )

    with gr.Row():
        with gr.Column(scale=4):
            user_text = gr.Textbox(
                placeholder='μž…λ ₯',
                label="User input"
            )
            model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
            button_submit = gr.Button(value="Submit")
        with gr.Column(scale=1):
            id_text = gr.Textbox(
                placeholder='772727',
                label="User id"
            )
            customer_data = gr.Textbox(
                placeholder='(무)1λ…„λΆ€ν„°μ €μΆ•λ³΄ν—˜, (무)μˆ˜μˆ λΉ„λ³΄ν—˜',
                label="customer_data"
            )
    button_submit.click(gen, [user_text, id_text, customer_data], model_output)
    demo.queue().launch(enable_queue=True)