File size: 7,192 Bytes
d595cc9
d05c508
c275b63
 
d595cc9
c275b63
 
d595cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c275b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05c508
 
 
c275b63
 
 
 
 
 
d05c508
 
c275b63
 
 
 
d05c508
c275b63
 
 
 
d595cc9
 
 
 
 
 
c275b63
 
 
 
d05c508
 
c275b63
 
d05c508
 
 
d595cc9
d05c508
 
 
c275b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05c508
c275b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05c508
c275b63
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import uuid
import gradio as gr
from src.gradio_demo import SadTalker  
from infer_onnx import TTS
from huggingface_hub import snapshot_download


# Список моделей TTS для выбора
models = ["TeraTTS/natasha-g2p-vits", "TeraTTS/glados2-g2p-vits", "TeraTTS/glados-g2p-vits", "TeraTTS/girl_nice-g2p-vits"]

# Создаем словарь моделей и инициализируем их
models = {k: TTS(k) for k in models}

# Функция для синтеза речи
def text_to_speech(model_name, length_scale, text):
    time_tag = str(uuid.uuid4())
    save_dir = './results/voice_input'
    os.makedirs(save_dir, exist_ok=True)
    file_name = os.path.join(save_dir, os.path.basename(time_tag + '.wav')) 
    
    open(file_name, "wb").close()

    audio = models[model_name](text, length_scale=length_scale)
    models[model_name].save_wav(audio, file_name, sample_rate=models[model_name].config["samplerate"])

    return file_name

def get_source_image(image):   
        return image

try:
    import webui  # in webui
    in_webui = True
except:
    in_webui = False


def toggle_audio_file(choice):
    if choice == False:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)
    
def ref_video_fn(path_of_ref_video):
    if path_of_ref_video is not None:
        return gr.update(value=True)
    else:
        return gr.update(value=False)
    
def download_model():
     REPO_ID = 'vinthony/SadTalker-V002rc'
     snapshot_download(REPO_ID)

def sadtalker_demo():

    download_model()

    sad_talker = SadTalker(lazy_load=True)

    with gr.Blocks(analytics_enabled=False) as sadtalker_interface: 
        with gr.Row():
            with gr.Column(variant='panel'):
                with gr.Tabs(elem_id="sadtalker_source_image"):
                    with gr.TabItem('Source image'):
                        with gr.Row():
                            source_image = gr.Image(label="Source image", source="upload", type="filepath", elem_id="img2img_image")


                with gr.Tabs(elem_id="sadtalker_driven_audio"):
                    with gr.TabItem('Driving Methods'):
                        with gr.Row():
                            model_choice = gr.Dropdown(choices=list(models.keys()), value="TeraTTS/natasha-g2p-vits", label="Choose TTS model")
                        with gr.Row():
                            length_scale = gr.Slider(minimum=0.1, maximum=2.0, label="Length scale (increase length of sound) Default: 1.2", value=1.2)
                        with gr.Row():
                            input_text = gr.Textbox(label="Enter text")
                        with gr.Row():
                            driven_audio = gr.Audio(label="Input audio", source="upload", type="filepath")
                            driven_audio_no = gr.Audio(label="Use IDLE mode, no audio is required", source="upload", type="filepath", visible=False)

                            with gr.Column(visible=False):
                                use_idle_mode = gr.Checkbox(label="Use Idle Animation", visible=False)
                                length_of_audio = gr.Number(value=5, label="The length(seconds) of the generated video.")
                                use_idle_mode.change(toggle_audio_file, inputs=use_idle_mode, outputs=[driven_audio, driven_audio_no]) # todo
                        with gr.Row():
                            play_button = gr.Button('Text To Speech', variant='primary')
                            play_button.click(
                                fn=text_to_speech, inputs=[model_choice, length_scale, input_text], outputs=[driven_audio]
                            ) 
                        with gr.Row():
                            ref_video = gr.Video(label="Reference Video", source="upload", type="filepath", elem_id="vidref")

                            with gr.Column():
                                use_ref_video = gr.Checkbox(label="Use Reference Video")
                                ref_info = gr.Radio(['pose', 'blink','pose+blink', 'all'], value='pose', label='Reference Video',info="How to borrow from reference Video?((fully transfer, aka, video driving mode))")

                            ref_video.change(ref_video_fn, inputs=ref_video, outputs=[use_ref_video]) # todo

            with gr.Column(variant='panel'): 
                with gr.Tabs(elem_id="sadtalker_checkbox"):
                    with gr.TabItem('Settings'):
                        with gr.Column(variant='panel'):
                            with gr.Row():
                                pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
                                exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) # 
                                blink_every = gr.Checkbox(label="use eye blink", value=True)

                            with gr.Row():
                                size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?") # 
                                preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
                            
                            with gr.Row():
                                is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
                                facerender = gr.Radio(['facevid2vid','pirender'], value='facevid2vid', label='facerender', info="which face render?")
                                
                            with gr.Row():
                                batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1)
                                enhancer = gr.Checkbox(label="GFPGAN as Face enhancer")
                            
                            submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
                            
                with gr.Tabs(elem_id="sadtalker_genearted"):
                        gen_video = gr.Video(label="Generated video", format="mp4")

        submit.click(
                fn=sad_talker.test,
                inputs=[source_image,
                        driven_audio,
                        preprocess_type,
                        is_still_mode,
                        enhancer,
                        batch_size,                            
                        size_of_image,
                        pose_style,
                        facerender,
                        exp_weight,
                        use_ref_video,
                        ref_video,
                        ref_info,
                        use_idle_mode,
                        length_of_audio,
                        blink_every
                        ], 
                outputs=[gen_video]
                ) 

    return sadtalker_interface
 
if __name__ == "__main__":

    demo = sadtalker_demo()
    demo.queue(max_size=10)
    demo.launch(debug=True)