import datetime import requests import pytz import yaml import pycountry from tools.final_answer import FinalAnswerTool from tools.visit_webpage import VisitWebpageTool from tools.translation import TranslationTool from transformers import pipeline from Gradio_UI import GradioUI from typing import Optional import os import base64 from opentelemetry.sdk.trace import TracerProvider from openinference.instrumentation.smolagents import SmolagentsInstrumentor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.sdk.trace.export import SimpleSpanProcessor from smolagents import ( CodeAgent, DuckDuckGoSearchTool, GoogleSearchTool, HfApiModel, load_tool, tool ) @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone (str): A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" @tool def conversational_utterance(user_content: str, additional_context: Optional[str]="") -> str: """ A tool that replies to a single casual query or message triggering any other tool is unfitted to reply. Args: user_content: A string with the user's message or query (e.g., "Hi!", "How are you?", "Tell me a joke"). additional_context: An optional string with additional information (such as context, metadata, conversation history, or instructions) to be passed as an 'assistant' turn (a thought) in the conversation. """ system_context_message = f""" You are a highly intelligent, expert, and witty assistant who responds to user conversational messages. You function as a tool activated by user intention via AI agents. In addition to your native LLM capabilities, you have access to the following system tools that the user may leverage: {tools} You should mention these tools whenever relevant during the conversation. """ messages = [ {"role": "system", "content": [{"type": "text", "text": system_context_message}]}, {"role": "assistant", "content": [{"type": "text", "text": f"(additional_context: {additional_context})"}]}, {"role": "user", "content": [{"type": "text", "text": user_content}]} ] return model(messages).content @tool def language_detection(text:str)-> str: """Detects the language of the input text using basic xlm-roberta-base-language-detection. Args: text: the input message or wording to detect language from. """ model_ckpt = "papluca/xlm-roberta-base-language-detection" pipe = pipeline("text-classification", model=model_ckpt) preds = pipe(text, return_all_scores=True, truncation=True, max_length=128) if preds: pred = preds[0] language_probabilities_dict = {p["label"]: float(p["score"]) for p in pred} predicted_language_code = max(language_probabilities_dict, key=language_probabilities_dict.get) tool_prediction_confidence = language_probabilities_dict[predicted_language_code] confidence_str = f"Tool Confidence: {tool_prediction_confidence}" predicted_language_code_str = f"Predicted language code (ISO 639): {predicted_language_code}/n{confidence_str}" try: predicted_language = pycountry.languages.get(alpha_2=predicted_language_code) if predicted_language: predicted_language_str = f"Predicted language: {predicted_language.name}/n{confidence_str}" return predicted_language_str return predicted_language_code_str except Exception as e: return f"Error mapping country code to name (pycountry): {str(e)}/n{predicted_language_code_str}" else: return "None" def initialize_langfuse_opentelemetry_instrumentation(): LANGFUSE_PUBLIC_KEY=os.environ.get("LANGFUSE_PUBLIC_KEY") LANGFUSE_SECRET_KEY=os.environ.get("LANGFUSE_SECRET_KEY") LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode() os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}" trace_provider = TracerProvider() trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) initialize_langfuse_opentelemetry_instrumentation() # tools from /tools/ final_answer = FinalAnswerTool() visit_webpage = VisitWebpageTool() translation_tool = TranslationTool() # tools from smoloagents library prefered_web_search = GoogleSearchTool() prefered_web_search.name = "preferred_web_search" alternative_web_search = DuckDuckGoSearchTool() alternative_web_search.name = "alternative_web_search" # tools from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) tools = [ final_answer, prefered_web_search, alternative_web_search, visit_webpage, get_current_time_in_timezone, conversational_utterance, image_generation_tool, language_detection, translation_tool ] agent = CodeAgent( model=model, tools=tools, max_steps=7, verbosity_level=2, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) # agent.push_to_hub('laverdes/Alfredo') GradioUI(agent).launch()