File size: 6,796 Bytes
6bc49a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from collections import deque

import faiss
import torch
import torch.nn.functional as F
import numpy as np
from torch import nn


class KNN:
    """
    KNN for one element in batch. Handles all heads
    """

    def __init__(self, num_heads, head_dim, memories_size=16000, shrink_size=None, cache=None):
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.memories_size = memories_size
        self.shrink_size = shrink_size or memories_size * 1.1
        self.indexes = [faiss.IndexFlat(
            self.head_dim, faiss.METRIC_INNER_PRODUCT) for _ in range(self.num_heads)]
        self.values = [deque([]) for _ in range(self.num_heads)]
        self.cache = cache

    def __del__(self):
        if hasattr(self, 'indexes'):
            del self.indexes
            del self.values

    def clear(self):
        for index in self.indexes:
            index.reset()

        for value in self.values:
            value.clear()

    def shrink(self):
        """Shrinks index to memories_size"""

        for i, index in enumerate(self.indexes):
            if index.ntotal > self.shrink_size:
                to_delete = index.ntotal - self.memories_size
                index.remove_ids(np.arange(0, to_delete))

                for _ in range(to_delete):
                    self.values[i].popleft()

    def add(self, key, value):
        for i, k in enumerate(key):
            self.indexes[i].add(k)
        for i, v in enumerate(value):
            self.values[i].extend(v)

        if self.cache is not None:
            raise RuntimeError("Cache for KNN not implemented")
            # self.cache.add(key)

        self.shrink()

    def search(self, query, k=32):
        """
        Searchs for query in keys' index.
        Returns k most relevant keys and corresponding values
        """

        k = min(k, len(self.values[0]))

        if k <= 0:
            return torch.empty((query.shape[0], query.shape[1], 0, query.shape[2])),\
                torch.empty(
                    (query.shape[0], query.shape[1], 0, query.shape[2]))

        Ks, Vs = [], []

        for i, q in enumerate(query):
            D, I, K = self.indexes[i].search_and_reconstruct(q, k=k)
            V = np.take(self.values[i], indices=I, axis=0)
            Ks.append(K)
            Vs.append(V)

        return np.stack(Ks, axis=0), np.stack(Vs, axis=0)


class KNNLayer:
    """
    KNN Attention layer. Handles KNN's for batch (every elemnt separately)
    """

    def __init__(self, config, share_memory=True, batch_size=None, memory_size=16000, shrink_size=None, n_jobs=4, cache=None):
        if not share_memory and batch_size is None:
            raise RuntimeError(
                "If share_memory is False, batch_size should be passed")

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads

        self.share_memory = share_memory
        self.batch_size = batch_size
        self.memory_size = memory_size
        self.shrink_size = shrink_size or self.memory_size * 1.1
        self.closed = False

        if not share_memory:
            self.knns = [KNN(self.num_heads, self.head_dim, memory_size,
                             self.shrink_size, cache=cache) for _ in range(self.batch_size)]
        else:
            self.knn = KNN(self.num_heads, self.head_dim,
                           memory_size, self.shrink_size, cache=cache)

        faiss.omp_set_num_threads(n_jobs)

    def clear_batches(self, batch_indexes):
        if self.closed:
            return

        if not self.share_memory:
            for idx in batch_indexes:
                self.knns[idx].clear()

    def clear(self):
        if self.closed:
            return

        if self.share_memory:
            self.knn.clear()
        else:
            for idx in range(len(self.knns)):
                self.knns[idx].clear()

    def add(self, keys, values):
        if self.closed:
            return

        keys, values = keys.numpy(force=True), values.numpy(force=True)
        if not self.share_memory:
            for i, (key, value) in enumerate(zip(keys, values)):
                self.knns[i].add(key, value)
        else:
            for key, value in zip(keys, values):
                self.knn.add(key, value)

    def search(self, queries, k=32):
        queries = queries.numpy(force=True)
        keys, values = [], []
        max_len = 0

        if self.share_memory:
            for query in queries:
                key, value = self.knn.search(query, k)
                keys.append(key)
                values.append(value)
                max_len = max(max_len, key.shape[2])
        else:
            for i, query in enumerate(queries):
                key, value = self.knns[i].search(query, k)
                keys.append(key)
                values.append(value)
                max_len = max(max_len, key.shape[2])

        masks = np.ones((len(keys), max_len), dtype=np.float32)

        for i, (key, value) in enumerate(zip(keys, values)):
            l = key.shape[2]

            if l == max_len:
                continue
            elif l > max_len:
                raise RuntimeError("What? max_len is not max")

            sh = list(key.shape)
            sh[2] = max_len - sh[2]
            keys[i] = np.concatenate(
                (key, np.zeros(sh, dtype=np.float32)), axis=2)
            values[i] = np.concatenate(
                (value, np.zeros(sh, dtype=np.float32)), axis=2)
            masks[i, l:] = 0

        return torch.from_numpy(np.stack(keys, axis=0)),\
            torch.from_numpy(np.stack(values, axis=0)),\
            torch.from_numpy(masks)

    def close(self):
        self.closed = True

    def open(self):
        self.closed = False

    def reset(self):
        self.open()
        self.clear()


class ClearMemoryLayer(nn.Module):
    def __init__(self, knn_memory, bos_token, eos_token, next_layer):
        super().__init__()

        self.knn_memory = knn_memory
        self.bos_token = bos_token
        self.eos_token = eos_token
        self.next_layer = next_layer

    def _clear_if_token(self, tokens, token):
        batches_to_clear = (tokens == token).any(dim=-1).nonzero()

        if len(batches_to_clear) > 0:
            self.knn_memory.clear_batches(batches_to_clear[0])

    def forward(self, tokens, *args, **kwargs):
        # self._clear_if_token(tokens, self.bos_token)

        batches_to_clear = (tokens[:, 0] == self.bos_token).nonzero()

        if len(batches_to_clear) > 0:
            self.knn_memory.clear_batches(batches_to_clear[:, 0])

        res = self.next_layer(tokens, *args, **kwargs)
        # self._clear_if_token(tokens, self.eos_token)

        return res