File size: 1,412 Bytes
6bc49a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from torch.utils.data import DataLoader
from transformers import DataCollatorWithPadding

# some utils for training


class BooksBatcherIter:
    def __init__(self, data_iter, batch_size, tokenizer, chunk_size=1024):
        self.data_iter = data_iter
        self.batch_size = batch_size
        self.chunk_size = chunk_size
        self.batch_fns = [self._batch_fn()]
        self.collate_fn = DataCollatorWithPadding(tokenizer)

    def _batch_fn(self):
        for book in self.data_iter:
            for i in range(0, len(book), self.chunk_size):
                yield book[i:i+self.chunk_size]

    def __iter__(self) -> 'BooksBatcherIter':
        return self

    def __next__(self) -> Any:
        batch = []

        try:
            for b in self.batch_fns:
                batch.append(next(b))
        except StopIteration:
            raise StopIteration

        return self.collate_fn(batch)


class BooksBatcher:
    def __init__(self, dataset, batch_size, tokenizer) -> None:
        self.batch_size = batch_size
        self.tokenizer = tokenizer
        self.dataloader = DataLoader(
            dataset=dataset,
            batch_size=None,  # return raw samples
            shuffle=True,
            num_workers=2,
            prefetch_factor=4
        )

    def __iter__(self) -> 'BooksBatcherIter':
        return BooksBatcherIter(iter(self.dataloader), self.batch_size, self.tokenizer)