import streamlit as st from sentence_transformers import SentenceTransformer, util @st.cache_resource # Cache the model for faster loading def load_model(): return SentenceTransformer('sentence-transformers/all-mpnet-base-v2') model = load_model() st.title("Text Similarity Checker") text1 = st.text_input("Enter the first text:") text2 = st.text_input("Enter the second text:") if text1 and text2: # Calculate embeddings and similarity embedding1 = model.encode(text1) embedding2 = model.encode(text2) similarity = util.cos_sim(embedding1, embedding2).item() * 100 st.write(f"**Similarity Score:** {similarity:.2f}%")