Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
-
import docx2txt
|
5 |
-
import PyPDF2
|
6 |
|
7 |
-
@st.cache_resource
|
8 |
def load_model():
|
9 |
-
return SentenceTransformer('all-mpnet-base-v2')
|
10 |
|
11 |
model = load_model()
|
12 |
|
13 |
-
|
14 |
-
if file.type == "application/pdf":
|
15 |
-
with open(file, "rb") as f:
|
16 |
-
pdf_reader = PyPDF2.PdfReader(f)
|
17 |
-
text = "".join([page.extract_text() for page in pdf_reader.pages])
|
18 |
-
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
19 |
-
text = docx2txt.process(file)
|
20 |
-
else:
|
21 |
-
return None
|
22 |
-
return text
|
23 |
|
24 |
-
st.
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
job_description_embedding = model.encode(job_description)
|
33 |
-
resume_embedding = model.encode(resume_text)
|
34 |
-
|
35 |
-
similarity_score = util.cos_sim(job_description_embedding, resume_embedding).item() * 100
|
36 |
-
st.write(f"**Similarity Score:** {similarity_score:.2f}%")
|
37 |
-
|
38 |
-
if similarity_score > 80:
|
39 |
-
st.success("Your resume seems to be a strong match for the job description!")
|
40 |
-
elif similarity_score > 50:
|
41 |
-
st.warning("Your resume shows some alignment, but consider enhancing it further to better reflect the job requirements.")
|
42 |
-
else:
|
43 |
-
st.error("Your resume might not align well with the job description. Consider revising it based on the listed requirements.")
|
44 |
-
else:
|
45 |
-
st.error("Unsupported file type. Please upload a PDF or DOCX file.")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
3 |
|
4 |
+
@st.cache_resource # Cache the model for faster loading
|
5 |
def load_model():
|
6 |
+
return SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
7 |
|
8 |
model = load_model()
|
9 |
|
10 |
+
st.title("Text Similarity Checker")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
text1 = st.text_input("Enter the first text:")
|
13 |
+
text2 = st.text_input("Enter the second text:")
|
14 |
|
15 |
+
if text1 and text2:
|
16 |
+
# Calculate embeddings and similarity
|
17 |
+
embedding1 = model.encode(text1)
|
18 |
+
embedding2 = model.encode(text2)
|
19 |
+
similarity = util.cos_sim(embedding1, embedding2).item() * 100
|
20 |
+
st.write(f"**Similarity Score:** {similarity:.2f}%")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|