Spaces:
Running
Running
File size: 6,425 Bytes
2926cc4 697ae1d ed2eb44 2926cc4 ed2eb44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
title: MLRC-BENCH
emoji: π
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: 1.39.0
app_file: app.py
pinned: false
license: cc-by-4.0
---
## Overview
This application provides a visual leaderboard for comparing AI model performance on challenging Machine Learning Research Competition problems. It uses Streamlit to create an interactive web interface with filtering options, allowing users to select specific models and tasks for comparison.
The leaderboard uses the MLRC-BENCH benchmark, which measures what percentage of the top human-to-baseline performance gap an agent can close. Success is defined as achieving at least 5% of the margin by which the top human solution surpasses the baseline.
### Key Features
- **Interactive Filtering**: Select specific model types and tasks to focus on
- **Customizable Metrics**: Compare models using "Margin to Human" performance scores
- **Hierarchical Table Display**: Fixed columns with scrollable metrics section
- **Conditional Formatting**: Visual indicators for positive/negative values
- **Model Type Color Coding**: Different colors for Open Source, Open Weights, and Closed Source models
- **Medal Indicators**: Top-ranked models receive gold, silver, and bronze medals
- **Task Descriptions**: Detailed explanations of what each task measures
## Project Structure
The codebase follows a modular architecture for improved maintainability and separation of concerns:
```
app.py (main entry point)
βββ requirements.txt
βββ src/
βββ app.py (main application logic)
βββ components/
β βββ header.py (header and footer components)
β βββ filters.py (filter selection components)
β βββ leaderboard.py (leaderboard table component)
β βββ tasks.py (task descriptions component)
βββ data/
β βββ processors.py (data processing utilities)
β βββ metrics/
β βββ margin_to_human.json (metric data file)
βββ styles/
β βββ base.py (combined styles)
β βββ components.py (component styling)
β βββ tables.py (table-specific styling)
β βββ theme.py (theme definitions)
βββ utils/
βββ config.py (configuration settings)
βββ data_loader.py (data loading utilities)
```
### Module Descriptions
#### Core Files
- `app.py` (root): Simple entry point that imports and calls the main function
- `src/app.py`: Main application logic, coordinates the overall flow
#### Components
- `header.py`: Manages the page header, section headers, and footer components
- `filters.py`: Handles metric, task, and model type selection interfaces
- `leaderboard.py`: Renders the custom HTML leaderboard table
- `tasks.py`: Renders the task descriptions section
#### Data Processing
- `processors.py`: Contains utilities for data formatting and styling
- `data_loader.py`: Functions for loading and processing metric data
#### Styling
- `theme.py`: Base theme definitions and color schemes
- `components.py`: Styling for UI components (buttons, cards, etc.)
- `tables.py`: Styling for tables and data displays
- `base.py`: Combines all styles for application-wide use
#### Configuration
- `config.py`: Contains all configuration settings including themes, metrics, and model categorizations
## Benefits of Modular Architecture
The modular structure provides several advantages:
1. **Improved Code Organization**: Code is logically separated based on functionality
2. **Better Separation of Concerns**: Each module has a clear, single responsibility
3. **Enhanced Maintainability**: Changes to one aspect don't require modifying the entire codebase
4. **Simplified Testing**: Components can be tested independently
5. **Easier Collaboration**: Multiple developers can work on different parts simultaneously
6. **Cleaner Entry Point**: Main app file is simple and focused
## Installation & Setup
1. Clone the repository
```bash
git clone <repository-url>
cd model-capability-leaderboard
```
2. Install the required dependencies
```bash
pip install -r requirements.txt
```
3. Run the application
```bash
streamlit run app.py
```
## Extending the Application
### Adding New Metrics
To add a new metric:
1. Create a new JSON data file in the `src/data/metrics/` directory (e.g., `src/data/metrics/new_metric.json`)
2. Update `metrics_config` in `src/utils/config.py`:
```python
metrics_config = {
"Margin to Human": { ... },
"New Metric Name": {
"file": "src/data/metrics/new_metric.json",
"description": "Description of the new metric",
"min_value": 0,
"max_value": 100,
"color_map": "viridis"
}
}
```
3. Ensure your metric JSON file follows the same format as existing metrics:
```json
{
"task-name": {
"model-name-1": value,
"model-name-2": value
},
"another-task": {
"model-name-1": value,
"model-name-2": value
}
}
```
### Adding New Model Types
To add new model types:
1. Update `model_categories` in `src/utils/config.py`:
```python
model_categories = {
"Existing Model": "Category",
"New Model Name": "New Category"
}
```
### Modifying the UI Theme
To change the theme colors:
1. Update the `dark_theme` dictionary in `src/utils/config.py`
### Adding New Components
To add new visualization components:
1. Create a new file in the `src/components/` directory
2. Import and use the component in `src/app.py`
## Data Format
The application uses JSON files for metric data. The expected format is:
```json
{
"task-name": {
"model-name-1": value,
"model-name-2": value
},
"another-task": {
"model-name-1": value,
"model-name-2": value
}
}
```
## Testing
This modular structure makes it easier to write focused unit tests:
```python
# Example test for data_loader.py
def test_process_data():
test_data = {"task": {"model": 0.5}}
df = process_data(test_data)
assert "Task" in df.columns
assert df.loc["model", "Task"] == 0.5
```
## License
[MIT License](LICENSE)
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## Contact
For any questions or feedback, please contact [[email protected]](mailto:[email protected]).
|