import pickle import re import string import pandas as pd import sys sys.path.append(".") from tasks.utils.preprocessing import process_text import json from sklearn.feature_extraction.text import TfidfVectorizer def predict(input_df: pd.DataFrame, tfidf_path:str , tfidf_voc_path:str, tfidf_idf_path:str, model_path: str): """ Predict the output using a saved TF-IDF vectorizer and Random Forest model. Parameters: input_df (pd.DataFrame): Input dataframe containing the text data. tfidf_path (str): Path to the saved TF-IDF vectorizer pickle file. model_path (str): Path to the saved Random Forest model pickle file. text_column (str): The name of the column in the dataframe containing the text data. Returns: pd.Series: Predictions for each row in the input dataframe. """ # Load the TF-IDF vectorizer with open(tfidf_path, "rb") as tfidf_file: params = json.load(tfidf_file) # Load the Random Forest model with open(model_path, "rb") as model_file: model = pickle.load(model_file) # Load vocabulary with open(tfidf_voc_path, "rb") as f: vocab = pickle.load(f) # Load vocabulary with open(tfidf_idf_path, "rb") as f: idf = pickle.load(f) tfidf_vectorizer = TfidfVectorizer(**params) tfidf_vectorizer.set_params(preprocessor=process_text) tfidf_vectorizer.set_params(vocabulary=vocab) tfidf_vectorizer.idf_ = idf # Transform the input text using the TF-IDF vectorizer text_data = input_df.to_pandas()["quote"] text_features = tfidf_vectorizer.transform(text_data) # Make predictions using the loaded model predictions = model.predict(text_features) return predictions