from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from .utils.predict import predict from .utils.preprocessing import process_text print(process_text("I am better")) #packages needed for inference import pickle import torch import os router = APIRouter() DESCRIPTION = "TF-IDF + RF" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] current_file_path = os.path.abspath(__file__) current_dir = os.path.dirname(current_file_path) """ with open(os.path.join(current_dir,"tfidf_vectorizer2.pkl"), "rb") as tfidf_file: tfidf_vectorizer = cloudpickle.load(tfidf_file)""" # Make predictions using the loaded model predictions = predict(test_dataset,os.path.join(current_dir,"tfidf_vectorizer_params.json"),os.path.join(current_dir,"tfidf_vectorizer_vocab.pkl"),os.path.join(current_dir,"tfidf_vectorizer_idf.pkl"),os.path.join(current_dir,"random_forest_model.pkl")) predictions = [LABEL_MAPPING[label] for label in predictions] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results