import pickle import re import string from nltk.corpus import stopwords import nltk import spacy # Get the list of English stop words from NLTK nltk_stop_words = stopwords.words('english') # Load the spaCy model for English nlp = spacy.load("en_core_web_sm") def process_text(text): """ Process text by: 1. Lowercasing 2. Removing punctuation and non-alphanumeric characters 3. Removing stop words 4. Lemmatization """ # Step 1: Tokenization & Processing with spaCy doc = nlp(text.lower()) # Process text with spaCy # Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization processed_tokens = [ re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters for token in doc if token.text not in nltk_stop_words and token.text not in string.punctuation ] # Optional: Filter out empty strings resulting from the regex replacement processed_tokens = " ".join([word for word in processed_tokens if word]) return processed_tokens def predict(input_df: pd.DataFrame, tfidf_path: str, model_path: str, text_column: str = "quote"): """ Predict the output using a saved TF-IDF vectorizer and Random Forest model. Parameters: input_df (pd.DataFrame): Input dataframe containing the text data. tfidf_path (str): Path to the saved TF-IDF vectorizer pickle file. model_path (str): Path to the saved Random Forest model pickle file. text_column (str): The name of the column in the dataframe containing the text data. Returns: pd.Series: Predictions for each row in the input dataframe. """ # Load the TF-IDF vectorizer with open(tfidf_path, "rb") as tfidf_file: tfidf_vectorizer = pickle.load(tfidf_file) # Load the Random Forest model with open(model_path, "rb") as model_file: model = pickle.load(model_file) # Transform the input text using the TF-IDF vectorizer text_data = input_df.to_pandas()["quote"] text_features = tfidf_vectorizer.transform(text_data) # Make predictions using the loaded model predictions = model.predict(text_features) return predictions