Spaces:
Sleeping
Sleeping
Create preprocessing.py
Browse files- tasks/utils/preprocessing.py +67 -0
tasks/utils/preprocessing.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import re
|
3 |
+
import string
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
import nltk
|
6 |
+
import spacy
|
7 |
+
|
8 |
+
# Get the list of English stop words from NLTK
|
9 |
+
nltk_stop_words = stopwords.words('english')
|
10 |
+
|
11 |
+
# Load the spaCy model for English
|
12 |
+
nlp = spacy.load("en_core_web_sm")
|
13 |
+
def process_text(text):
|
14 |
+
"""
|
15 |
+
Process text by:
|
16 |
+
1. Lowercasing
|
17 |
+
2. Removing punctuation and non-alphanumeric characters
|
18 |
+
3. Removing stop words
|
19 |
+
4. Lemmatization
|
20 |
+
"""
|
21 |
+
# Step 1: Tokenization & Processing with spaCy
|
22 |
+
doc = nlp(text.lower()) # Process text with spaCy
|
23 |
+
|
24 |
+
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization
|
25 |
+
processed_tokens = [
|
26 |
+
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters
|
27 |
+
for token in doc
|
28 |
+
if token.text not in nltk_stop_words and token.text not in string.punctuation
|
29 |
+
]
|
30 |
+
|
31 |
+
# Optional: Filter out empty strings resulting from the regex replacement
|
32 |
+
processed_tokens = " ".join([word for word in processed_tokens if word])
|
33 |
+
|
34 |
+
return processed_tokens
|
35 |
+
|
36 |
+
|
37 |
+
def predict(input_df: pd.DataFrame, tfidf_path: str, model_path: str, text_column: str = "quote"):
|
38 |
+
"""
|
39 |
+
Predict the output using a saved TF-IDF vectorizer and Random Forest model.
|
40 |
+
|
41 |
+
Parameters:
|
42 |
+
input_df (pd.DataFrame): Input dataframe containing the text data.
|
43 |
+
tfidf_path (str): Path to the saved TF-IDF vectorizer pickle file.
|
44 |
+
model_path (str): Path to the saved Random Forest model pickle file.
|
45 |
+
text_column (str): The name of the column in the dataframe containing the text data.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
pd.Series: Predictions for each row in the input dataframe.
|
49 |
+
"""
|
50 |
+
# Load the TF-IDF vectorizer
|
51 |
+
with open(tfidf_path, "rb") as tfidf_file:
|
52 |
+
tfidf_vectorizer = pickle.load(tfidf_file)
|
53 |
+
|
54 |
+
# Load the Random Forest model
|
55 |
+
with open(model_path, "rb") as model_file:
|
56 |
+
model = pickle.load(model_file)
|
57 |
+
|
58 |
+
# Transform the input text using the TF-IDF vectorizer
|
59 |
+
text_data = input_df.to_pandas()["quote"]
|
60 |
+
text_features = tfidf_vectorizer.transform(text_data)
|
61 |
+
|
62 |
+
# Make predictions using the loaded model
|
63 |
+
predictions = model.predict(text_features)
|
64 |
+
|
65 |
+
return predictions
|
66 |
+
|
67 |
+
|