Spaces:
Sleeping
Sleeping
Create preprocessing.py
Browse files- tasks/utils/preprocessing.py +33 -0
tasks/utils/preprocessing.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from nltk.corpus import stopwords
|
3 |
+
import spacy
|
4 |
+
|
5 |
+
nltk.download('stopwords')
|
6 |
+
# Get the list of English stop words from NLTK
|
7 |
+
nltk_stop_words = stopwords.words('english')
|
8 |
+
# Load the spaCy model for English
|
9 |
+
nlp = spacy.load("en_core_web_sm")
|
10 |
+
|
11 |
+
|
12 |
+
def process_text(text):
|
13 |
+
"""
|
14 |
+
Process text by:
|
15 |
+
1. Lowercasing
|
16 |
+
2. Removing punctuation and non-alphanumeric characters
|
17 |
+
3. Removing stop words
|
18 |
+
4. Lemmatization
|
19 |
+
"""
|
20 |
+
# Step 1: Tokenization & Processing with spaCy
|
21 |
+
doc = nlp(text.lower()) # Process text with spaCy
|
22 |
+
|
23 |
+
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization
|
24 |
+
processed_tokens = [
|
25 |
+
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters
|
26 |
+
for token in doc
|
27 |
+
if token.text not in nltk_stop_words and token.text not in string.punctuation
|
28 |
+
]
|
29 |
+
|
30 |
+
# Optional: Filter out empty strings resulting from the regex replacement
|
31 |
+
processed_tokens = " ".join([word for word in processed_tokens if word])
|
32 |
+
|
33 |
+
return processed_tokens
|