sumesh4C commited on
Commit
8b3c726
·
verified ·
1 Parent(s): 6152e94

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -8
README.md CHANGED
@@ -12,7 +12,7 @@ pinned: false
12
 
13
  ## Model Description
14
 
15
- This is a random baseline model for the Frugal AI Challenge 2024, specifically for the text classification task of identifying climate disinformation. The model serves as a performance floor, randomly assigning labels to text inputs without any learning.
16
 
17
  ### Intended Use
18
 
@@ -24,7 +24,7 @@ This is a random baseline model for the Frugal AI Challenge 2024, specifically f
24
 
25
  The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
26
  - Size: ~6000 examples
27
- - Split: 80% train, 20% test
28
  - 8 categories of climate disinformation claims
29
 
30
  ### Labels
@@ -40,13 +40,13 @@ The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
40
  ## Performance
41
 
42
  ### Metrics
43
- - **Accuracy**: ~12.5% (random chance with 8 classes)
44
  - **Environmental Impact**:
45
  - Emissions tracked in gCO2eq
46
  - Energy consumption tracked in Wh
47
 
48
  ### Model Architecture
49
- The model implements a random choice between the 8 possible labels, serving as the simplest possible baseline.
50
 
51
  ## Environmental Impact
52
 
@@ -57,11 +57,7 @@ Environmental impact is tracked using CodeCarbon, measuring:
57
  This tracking helps establish a baseline for the environmental impact of model deployment and inference.
58
 
59
  ## Limitations
60
- - Makes completely random predictions
61
- - No learning or pattern recognition
62
- - No consideration of input text
63
  - Serves only as a baseline reference
64
- - Not suitable for any real-world applications
65
 
66
  ## Ethical Considerations
67
 
 
12
 
13
  ## Model Description
14
 
15
+ After getting the embeddings of the quotes by using an embedding model , a basic Neural Network has been trained for the classification part.
16
 
17
  ### Intended Use
18
 
 
24
 
25
  The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
26
  - Size: ~6000 examples
27
+ - Split: 70% train, 30% test
28
  - 8 categories of climate disinformation claims
29
 
30
  ### Labels
 
40
  ## Performance
41
 
42
  ### Metrics
43
+ - **Accuracy**: ~78.5%
44
  - **Environmental Impact**:
45
  - Emissions tracked in gCO2eq
46
  - Energy consumption tracked in Wh
47
 
48
  ### Model Architecture
49
+ The model implements a Neural Network between the 8 possible labels, serving as a first baseline.
50
 
51
  ## Environmental Impact
52
 
 
57
  This tracking helps establish a baseline for the environmental impact of model deployment and inference.
58
 
59
  ## Limitations
 
 
 
60
  - Serves only as a baseline reference
 
61
 
62
  ## Ethical Considerations
63