Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +34 -0
tasks/text.py
CHANGED
@@ -14,6 +14,40 @@ import pickle
|
|
14 |
import torch
|
15 |
import os
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
router = APIRouter()
|
18 |
|
19 |
DESCRIPTION = "TF-IDF + RF"
|
|
|
14 |
import torch
|
15 |
import os
|
16 |
|
17 |
+
import nltk
|
18 |
+
from nltk.corpus import stopwords
|
19 |
+
import spacy
|
20 |
+
|
21 |
+
nltk.download('stopwords')
|
22 |
+
# Get the list of English stop words from NLTK
|
23 |
+
nltk_stop_words = stopwords.words('english')
|
24 |
+
# Load the spaCy model for English
|
25 |
+
nlp = spacy.load("en_core_web_sm")
|
26 |
+
|
27 |
+
|
28 |
+
def process_text(text):
|
29 |
+
"""
|
30 |
+
Process text by:
|
31 |
+
1. Lowercasing
|
32 |
+
2. Removing punctuation and non-alphanumeric characters
|
33 |
+
3. Removing stop words
|
34 |
+
4. Lemmatization
|
35 |
+
"""
|
36 |
+
# Step 1: Tokenization & Processing with spaCy
|
37 |
+
doc = nlp(text.lower()) # Process text with spaCy
|
38 |
+
|
39 |
+
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization
|
40 |
+
processed_tokens = [
|
41 |
+
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters
|
42 |
+
for token in doc
|
43 |
+
if token.text not in nltk_stop_words and token.text not in string.punctuation
|
44 |
+
]
|
45 |
+
|
46 |
+
# Optional: Filter out empty strings resulting from the regex replacement
|
47 |
+
processed_tokens = " ".join([word for word in processed_tokens if word])
|
48 |
+
|
49 |
+
return processed_tokens
|
50 |
+
|
51 |
router = APIRouter()
|
52 |
|
53 |
DESCRIPTION = "TF-IDF + RF"
|