Spaces:
Sleeping
Sleeping
| import pickle | |
| import re | |
| import string | |
| import pandas as pd | |
| import sys | |
| sys.path.append(".") | |
| from tasks.utils.preprocessing import process_text | |
| import json | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| def predict(input_df: pd.DataFrame, tfidf_path:str , tfidf_voc_path:str, tfidf_idf_path:str, model_path: str): | |
| """ | |
| Predict the output using a saved TF-IDF vectorizer and Random Forest model. | |
| Parameters: | |
| input_df (pd.DataFrame): Input dataframe containing the text data. | |
| tfidf_path (str): Path to the saved TF-IDF vectorizer pickle file. | |
| model_path (str): Path to the saved Random Forest model pickle file. | |
| text_column (str): The name of the column in the dataframe containing the text data. | |
| Returns: | |
| pd.Series: Predictions for each row in the input dataframe. | |
| """ | |
| # Load the TF-IDF vectorizer | |
| with open(tfidf_path, "rb") as tfidf_file: | |
| params = json.load(tfidf_file) | |
| # Load the Random Forest model | |
| with open(model_path, "rb") as model_file: | |
| model = pickle.load(model_file) | |
| # Load vocabulary | |
| with open(tfidf_voc_path, "rb") as f: | |
| vocab = pickle.load(f) | |
| # Load vocabulary | |
| with open(tfidf_idf_path, "rb") as f: | |
| idf = pickle.load(f) | |
| tfidf_vectorizer = TfidfVectorizer(**params) | |
| tfidf_vectorizer.set_params(preprocessor=process_text) | |
| tfidf_vectorizer.set_params(vocabulary=vocab) | |
| tfidf_vectorizer.idf_ = idf | |
| # Transform the input text using the TF-IDF vectorizer | |
| text_data = input_df.to_pandas()["quote"] | |
| text_features = tfidf_vectorizer.transform(text_data) | |
| # Make predictions using the loaded model | |
| predictions = model.predict(text_features) | |
| return predictions | |