Spaces:
Sleeping
Sleeping
import pickle | |
import re | |
import string | |
import pandas as pd | |
import sys | |
sys.path.append(".") | |
from tasks.utils.preprocessing import process_text | |
import json | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def predict(input_df: pd.DataFrame, tfidf_path:str , tfidf_voc_path:str, tfidf_idf_path:str, model_path: str): | |
""" | |
Predict the output using a saved TF-IDF vectorizer and Random Forest model. | |
Parameters: | |
input_df (pd.DataFrame): Input dataframe containing the text data. | |
tfidf_path (str): Path to the saved TF-IDF vectorizer pickle file. | |
model_path (str): Path to the saved Random Forest model pickle file. | |
text_column (str): The name of the column in the dataframe containing the text data. | |
Returns: | |
pd.Series: Predictions for each row in the input dataframe. | |
""" | |
# Load the TF-IDF vectorizer | |
with open(tfidf_path, "rb") as tfidf_file: | |
params = json.load(tfidf_file) | |
# Load the Random Forest model | |
with open(model_path, "rb") as model_file: | |
model = pickle.load(model_file) | |
# Load vocabulary | |
with open(tfidf_voc_path, "rb") as f: | |
vocab = pickle.load(f) | |
# Load vocabulary | |
with open(tfidf_idf_path, "rb") as f: | |
idf = pickle.load(f) | |
tfidf_vectorizer = TfidfVectorizer(**params) | |
tfidf_vectorizer.set_params(preprocessor=process_text) | |
tfidf_vectorizer.set_params(vocabulary=vocab) | |
tfidf_vectorizer.idf_ = idf | |
# Transform the input text using the TF-IDF vectorizer | |
text_data = input_df.to_pandas()["quote"] | |
text_features = tfidf_vectorizer.transform(text_data) | |
# Make predictions using the loaded model | |
predictions = model.predict(text_features) | |
return predictions | |