sumesh4C's picture
Update tasks/utils/predict.py
cae897c verified
import pickle
import re
import string
import pandas as pd
import sys
sys.path.append(".")
from tasks.utils.preprocessing import process_text
import json
from sklearn.feature_extraction.text import TfidfVectorizer
def predict(input_df: pd.DataFrame, tfidf_path:str , tfidf_voc_path:str, tfidf_idf_path:str, model_path: str):
"""
Predict the output using a saved TF-IDF vectorizer and Random Forest model.
Parameters:
input_df (pd.DataFrame): Input dataframe containing the text data.
tfidf_path (str): Path to the saved TF-IDF vectorizer pickle file.
model_path (str): Path to the saved Random Forest model pickle file.
text_column (str): The name of the column in the dataframe containing the text data.
Returns:
pd.Series: Predictions for each row in the input dataframe.
"""
# Load the TF-IDF vectorizer
with open(tfidf_path, "rb") as tfidf_file:
params = json.load(tfidf_file)
# Load the Random Forest model
with open(model_path, "rb") as model_file:
model = pickle.load(model_file)
# Load vocabulary
with open(tfidf_voc_path, "rb") as f:
vocab = pickle.load(f)
# Load vocabulary
with open(tfidf_idf_path, "rb") as f:
idf = pickle.load(f)
tfidf_vectorizer = TfidfVectorizer(**params)
tfidf_vectorizer.set_params(preprocessor=process_text)
tfidf_vectorizer.set_params(vocabulary=vocab)
tfidf_vectorizer.idf_ = idf
# Transform the input text using the TF-IDF vectorizer
text_data = input_df.to_pandas()["quote"]
text_features = tfidf_vectorizer.transform(text_data)
# Make predictions using the loaded model
predictions = model.predict(text_features)
return predictions