Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
#packages needed for inference | |
from sentence_transformers import SentenceTransformer | |
from xgboost import XGBClassifier | |
import pickle | |
import torch | |
import os | |
router = APIRouter() | |
DESCRIPTION = "Embedding + Neural Network" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Set the device to MPS (if available) | |
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") | |
print(f"Using device: {device}") | |
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # You can use other Sentence Transformers models as needed | |
sentence_model = SentenceTransformer(model_name) | |
# Convert each sentence into a vector representation (embedding) | |
embeddings = sentence_model.encode(test_dataset['quote'], convert_to_tensor=True) | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
""" | |
from torch import nn, optim | |
class SimpleNN2(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super(SimpleNN2, self).__init__() | |
self.fc1 = nn.Linear(input_dim, 128) # Reduce hidden units | |
self.fc2 = nn.Linear(128, 64) # Further reduce units | |
self.fc3 = nn.Linear(64, output_dim) | |
self.relu = nn.ReLU() | |
self.dropout = nn.Dropout(0.3) # Add dropout | |
self.batch_norm1 = nn.BatchNorm1d(128) | |
self.batch_norm2 = nn.BatchNorm1d(64) | |
def forward(self, x): | |
x = self.relu(self.batch_norm1(self.fc1(x))) | |
x = self.dropout(x) # Apply dropout | |
x = self.relu(self.batch_norm2(self.fc2(x))) | |
x = self.dropout(x) # Apply dropout | |
x = self.fc3(x) # Output raw logits | |
return x | |
""" | |
current_file_path = os.path.abspath(__file__) | |
current_dir = os.path.dirname(current_file_path) | |
# model_nn = torch.load(os.path.join(current_dir,"model_nn.pth"), map_location=device) | |
model_nn = torch.jit.load(os.path.join(current_dir,"model_nn_scripted.pth"), map_location=device) | |
# Set the model to evaluation mode | |
model_nn.eval() | |
# Make predictions | |
with torch.no_grad(): | |
outputs = model_nn(embeddings) | |
_, predicted = torch.max(outputs, 1) # Get the class with the highest score | |
# Decode the predictions back to original labels using label_encoder | |
predictions = predicted.cpu().numpy() | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |