Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| from fastapi import APIRouter | |
| from datetime import datetime | |
| from datasets import load_dataset | |
| from sklearn.metrics import accuracy_score | |
| import random | |
| from .utils.evaluation import TextEvaluationRequest | |
| from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
| #packages needed for inference | |
| from sentence_transformers import SentenceTransformer | |
| from xgboost import XGBClassifier | |
| import pickle | |
| import torch | |
| import os | |
| router = APIRouter() | |
| DESCRIPTION = "Embedding + Neural Network" | |
| ROUTE = "/text" | |
| async def evaluate_text(request: TextEvaluationRequest): | |
| """ | |
| Evaluate text classification for climate disinformation detection. | |
| Current Model: Random Baseline | |
| - Makes random predictions from the label space (0-7) | |
| - Used as a baseline for comparison | |
| """ | |
| # Get space info | |
| username, space_url = get_space_info() | |
| # Define the label mapping | |
| LABEL_MAPPING = { | |
| "0_not_relevant": 0, | |
| "1_not_happening": 1, | |
| "2_not_human": 2, | |
| "3_not_bad": 3, | |
| "4_solutions_harmful_unnecessary": 4, | |
| "5_science_unreliable": 5, | |
| "6_proponents_biased": 6, | |
| "7_fossil_fuels_needed": 7 | |
| } | |
| # Load and prepare the dataset | |
| dataset = load_dataset(request.dataset_name) | |
| # Convert string labels to integers | |
| dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
| # Split dataset | |
| train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
| test_dataset = train_test["test"] | |
| # Start tracking emissions | |
| tracker.start() | |
| tracker.start_task("inference") | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE CODE HERE | |
| # Set the device to MPS (if available) | |
| device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # You can use other Sentence Transformers models as needed | |
| sentence_model = SentenceTransformer(model_name) | |
| # Convert each sentence into a vector representation (embedding) | |
| embeddings = sentence_model.encode(test_dataset['quote'], convert_to_tensor=True) | |
| # Make random predictions (placeholder for actual model inference) | |
| true_labels = test_dataset["label"] | |
| """ | |
| from torch import nn, optim | |
| class SimpleNN2(nn.Module): | |
| def __init__(self, input_dim, output_dim): | |
| super(SimpleNN2, self).__init__() | |
| self.fc1 = nn.Linear(input_dim, 128) # Reduce hidden units | |
| self.fc2 = nn.Linear(128, 64) # Further reduce units | |
| self.fc3 = nn.Linear(64, output_dim) | |
| self.relu = nn.ReLU() | |
| self.dropout = nn.Dropout(0.3) # Add dropout | |
| self.batch_norm1 = nn.BatchNorm1d(128) | |
| self.batch_norm2 = nn.BatchNorm1d(64) | |
| def forward(self, x): | |
| x = self.relu(self.batch_norm1(self.fc1(x))) | |
| x = self.dropout(x) # Apply dropout | |
| x = self.relu(self.batch_norm2(self.fc2(x))) | |
| x = self.dropout(x) # Apply dropout | |
| x = self.fc3(x) # Output raw logits | |
| return x | |
| """ | |
| current_file_path = os.path.abspath(__file__) | |
| current_dir = os.path.dirname(current_file_path) | |
| # model_nn = torch.load(os.path.join(current_dir,"model_nn.pth"), map_location=device) | |
| model_nn = torch.jit.load(os.path.join(current_dir,"model_nn_scripted.pth"), map_location=device) | |
| # Set the model to evaluation mode | |
| model_nn.eval() | |
| # Make predictions | |
| with torch.no_grad(): | |
| outputs = model_nn(embeddings) | |
| _, predicted = torch.max(outputs, 1) # Get the class with the highest score | |
| # Decode the predictions back to original labels using label_encoder | |
| predictions = predicted.cpu().numpy() | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE STOPS HERE | |
| #-------------------------------------------------------------------------------------------- | |
| # Stop tracking emissions | |
| emissions_data = tracker.stop_task() | |
| # Calculate accuracy | |
| accuracy = accuracy_score(true_labels, predictions) | |
| # Prepare results dictionary | |
| results = { | |
| "username": username, | |
| "space_url": space_url, | |
| "submission_timestamp": datetime.now().isoformat(), | |
| "model_description": DESCRIPTION, | |
| "accuracy": float(accuracy), | |
| "energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
| "emissions_gco2eq": emissions_data.emissions * 1000, | |
| "emissions_data": clean_emissions_data(emissions_data), | |
| "api_route": ROUTE, | |
| "dataset_config": { | |
| "dataset_name": request.dataset_name, | |
| "test_size": request.test_size, | |
| "test_seed": request.test_seed | |
| } | |
| } | |
| return results |