Spaces:
Sleeping
Sleeping
File size: 3,699 Bytes
4d6e8c2 c72c8a8 2fa8fbb 88dad2b c48587c 2fa8fbb a8c9010 3a14b2c 8ceca59 a8c9010 4d6e8c2 c48587c 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 8ceca59 4d6e8c2 70f5f26 a8c9010 4d6e8c2 a8c9010 0de3206 dbda781 ca7ae72 c48587c d480486 c48587c 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.predict import predict
from .utils.preprocessing import process_text
print(process_text("I am better"))
#packages needed for inference
import pickle
import torch
import os
router = APIRouter()
DESCRIPTION = "TF-IDF + RF"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
""" with open(os.path.join(current_dir,"tfidf_vectorizer2.pkl"), "rb") as tfidf_file:
tfidf_vectorizer = cloudpickle.load(tfidf_file)"""
# Make predictions using the loaded model
predictions = predict(test_dataset,os.path.join(current_dir,"tfidf_vectorizer_params.json"),os.path.join(current_dir,"tfidf_vectorizer_vocab.pkl"),os.path.join(current_dir,"tfidf_vectorizer_idf.pkl"),os.path.join(current_dir,"random_forest_model.pkl"))
predictions = [LABEL_MAPPING[label] for label in predictions]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |