first-gradio / app.py
lanzhiwang's picture
Update app.py
872c8d7
raw
history blame
970 Bytes
import gradio as gr
from transformers import pipeline
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="/root/.cache/huggingface/hub/models")
# model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path="/root/.cache/huggingface/hub/models")
# generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
generator = pipeline('text-generation', model='gpt2')
def generate(text):
result = generator(text, max_length=30, num_return_sequences=1)
return result[0]["generated_text"]
examples = [
["The Moon's orbit around Earth has"],
["The smooth Borealis basin in the Northern Hemisphere covers 40%"],
]
demo = gr.Interface(
fn=generate,
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
outputs=gr.outputs.Textbox(label="Generated Text"),
examples=examples
)
demo.launch(server_name="0.0.0.0", server_port=7860)