chore: update something
Browse files- README.md +15 -9
- app.py +439 -251
- requirements.txt +6 -5
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
-
title: Ghost 8B Beta (β, 128k
|
| 3 |
emoji: 👻 / 📚
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.36.1
|
| 8 |
app_file: app.py
|
|
@@ -10,15 +10,22 @@ pinned: true
|
|
| 10 |
header: mini
|
| 11 |
suggested_hardware: a10g-small
|
| 12 |
language:
|
| 13 |
-
- en
|
| 14 |
- vi
|
|
|
|
| 15 |
- es
|
| 16 |
- pt
|
| 17 |
-
- de
|
| 18 |
-
- it
|
| 19 |
-
- fr
|
| 20 |
-
- ko
|
| 21 |
- zh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
license: other
|
| 23 |
license_name: ghost-open-llms
|
| 24 |
license_link: https://ghost-x.org/ghost-open-llms-license
|
|
@@ -28,7 +35,6 @@ tags:
|
|
| 28 |
|
| 29 |
# ~
|
| 30 |
|
| 31 |
-
|
| 32 |
### Notes
|
| 33 |
|
| 34 |
The extension source code belongs to: "LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning". See source code details [here](https://github.com/datamllab/LongLM).
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Ghost 8B Beta (β, 128k)
|
| 3 |
emoji: 👻 / 📚
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.36.1
|
| 8 |
app_file: app.py
|
|
|
|
| 10 |
header: mini
|
| 11 |
suggested_hardware: a10g-small
|
| 12 |
language:
|
|
|
|
| 13 |
- vi
|
| 14 |
+
- ko
|
| 15 |
- es
|
| 16 |
- pt
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
- zh
|
| 18 |
+
- fr
|
| 19 |
+
- it
|
| 20 |
+
- de
|
| 21 |
+
- ja
|
| 22 |
+
- ru
|
| 23 |
+
- pl
|
| 24 |
+
- nl
|
| 25 |
+
- hi
|
| 26 |
+
- tr
|
| 27 |
+
- id
|
| 28 |
+
- en
|
| 29 |
license: other
|
| 30 |
license_name: ghost-open-llms
|
| 31 |
license_link: https://ghost-x.org/ghost-open-llms-license
|
|
|
|
| 35 |
|
| 36 |
# ~
|
| 37 |
|
|
|
|
| 38 |
### Notes
|
| 39 |
|
| 40 |
The extension source code belongs to: "LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning". See source code details [here](https://github.com/datamllab/LongLM).
|
app.py
CHANGED
|
@@ -3,6 +3,8 @@
|
|
| 3 |
import subprocess
|
| 4 |
import json
|
| 5 |
import requests
|
|
|
|
|
|
|
| 6 |
|
| 7 |
subprocess.run(
|
| 8 |
f"pip install flash-attn --no-build-isolation",
|
|
@@ -17,34 +19,78 @@ from typing import Iterator
|
|
| 17 |
import gradio as gr
|
| 18 |
import spaces
|
| 19 |
import torch
|
|
|
|
| 20 |
import wikipedia
|
| 21 |
import time
|
| 22 |
import SelfExtend
|
| 23 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
from bs4 import BeautifulSoup
|
| 25 |
from functools import lru_cache
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
MAX_MAX_NEW_TOKENS = 8192
|
| 29 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 30 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "123392"))
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
DESCRIPTION = """\
|
| 33 |
-
#
|
| 34 |
|
| 35 |
-
**Ghost 8B Beta**
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
🗞️ **Updates**
|
| 40 |
-
*
|
|
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
|
| 44 |
PLACEHOLDER = """
|
| 45 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
| 46 |
-
|
| 47 |
-
|
| 48 |
</div>
|
| 49 |
"""
|
| 50 |
|
|
@@ -55,231 +101,94 @@ LICENSE = """
|
|
| 55 |
Ghost 8B Beta may give inaccurate information, including information about people, so please verify Ghost 8B Beta's answers. [Ghost 8B Beta](https://ghost-x.org/docs/models/ghost-8b-beta/) by [Ghost X](https://ghost-x.org).
|
| 56 |
"""
|
| 57 |
|
| 58 |
-
EXAMPLES = [
|
| 59 |
-
[
|
| 60 |
-
"What is the significance of the Higgs boson in the Standard Model of particle physics?"
|
| 61 |
-
],
|
| 62 |
-
[
|
| 63 |
-
"Qu'est-ce que l'effet fondateur et comment influence-t-il la diversité génétique d'une population?"
|
| 64 |
-
],
|
| 65 |
-
["Qual è il principio di Le Chatelier e come si applica agli equilibri chimici?"],
|
| 66 |
-
[
|
| 67 |
-
"¿Qué es una supernova y cuál es su importancia en la formación de elementos pesados en el universo?"
|
| 68 |
-
],
|
| 69 |
-
[
|
| 70 |
-
"Qual é a definição formal de uma integral de linha e como é utilizada em física?"
|
| 71 |
-
],
|
| 72 |
-
[
|
| 73 |
-
"Was versteht man unter dem Moho-Diskontinuität und welche Bedeutung hat sie für das Verständnis der Erdkruste?"
|
| 74 |
-
],
|
| 75 |
-
[
|
| 76 |
-
"Hiện tượng nhà kính là gì và nó ảnh hưởng như thế nào đến biến đổi khí hậu toàn cầu?"
|
| 77 |
-
],
|
| 78 |
-
[
|
| 79 |
-
"알고리즘의 시간 복잡도가 중요한 이유는 무엇이며, 시간 복잡도를 어떻게 분석하나요?"
|
| 80 |
-
],
|
| 81 |
-
["什么是CRISPR-Cas9基因编辑技术,它在现代生物学研究中的作用是什么?"],
|
| 82 |
-
[
|
| 83 |
-
"Create a Python function that takes a list of integers and returns the list sorted in ascending order without using the built-in sort or sorted functions."
|
| 84 |
-
],
|
| 85 |
-
[
|
| 86 |
-
"Écrivez une fonction en C++ qui trouve le plus long sous-tableau contigu avec une somme égale à zéro."
|
| 87 |
-
],
|
| 88 |
-
[
|
| 89 |
-
"Scrivi una funzione in Java che calcola il fattoriale di un numero utilizzando la ricorsione."
|
| 90 |
-
],
|
| 91 |
-
[
|
| 92 |
-
"Desarrolla una función en JavaScript que determine si una cadena de texto es un palíndromo, ignorando espacios y signos de puntuación."
|
| 93 |
-
],
|
| 94 |
-
["Implemente uma função em C# que verifique se uma matriz quadrada é simétrica."],
|
| 95 |
-
[
|
| 96 |
-
"Schreiben Sie eine Funktion in Swift, die eine gegebene Zeichenfolge in umgekehrter Reihenfolge zurückgibt, ohne integrierte Funktionen zu verwenden."
|
| 97 |
-
],
|
| 98 |
-
[
|
| 99 |
-
"Viết một hàm trong PHP để tìm tất cả các số nguyên tố trong một khoảng cho trước."
|
| 100 |
-
],
|
| 101 |
-
[
|
| 102 |
-
"파이썬을 사용하여 주어진 이진 트리가 이진 탐색 트리인지 확인하는 함수를 작성하십시오."
|
| 103 |
-
],
|
| 104 |
-
[
|
| 105 |
-
"用 Go 语言编写一个函数,计算给定字符串中每个字符出现的次数,并返回一个包含字符及其出现次数的映射。"
|
| 106 |
-
],
|
| 107 |
-
[
|
| 108 |
-
"Can you help me design a detailed project plan for developing a machine learning model for predicting stock prices?"
|
| 109 |
-
],
|
| 110 |
-
[
|
| 111 |
-
"Pouvez-vous m'aider à organiser un emploi du temps hebdomadaire pour maximiser la productivité de mon équipe de développement logiciel?"
|
| 112 |
-
],
|
| 113 |
-
[
|
| 114 |
-
"Puoi aiutarmi a creare un piano di sviluppo per un'applicazione mobile che gestisce le prenotazioni di ristoranti?"
|
| 115 |
-
],
|
| 116 |
-
[
|
| 117 |
-
"¿Podrías ayudarme a elaborar un plan detallado para la implementación de un sistema de gestión de contenido (CMS) en una empresa mediana?"
|
| 118 |
-
],
|
| 119 |
-
[
|
| 120 |
-
"Você pode me ajudar a planejar uma estratégia de desenvolvimento para um sistema de comércio eletrônico escalável?"
|
| 121 |
-
],
|
| 122 |
-
[
|
| 123 |
-
"Können Sie mir helfen, einen detaillierten Zeitplan für die Implementierung eines neuen ERP-Systems in unserem Unternehmen zu erstellen?"
|
| 124 |
-
],
|
| 125 |
-
[
|
| 126 |
-
"Bạn có thể giúp tôi xây dựng một kế hoạch phát triển chi tiết cho dự án xây dựng hệ thống quản lý chuỗi cung ứng không?"
|
| 127 |
-
],
|
| 128 |
-
[
|
| 129 |
-
"신경망 기반 이미지 인식 모델 개발을 위한 세부 프로젝트 계획을 세우는 데 도움을 줄 수 있나요?"
|
| 130 |
-
],
|
| 131 |
-
["你能帮我制定一个详细的开发计划,用于创建一个基于区块链的分布式账本系统吗?"],
|
| 132 |
-
[
|
| 133 |
-
"Prove that the sum of the squares of any two sides of a right triangle is equal to the square of the hypotenuse."
|
| 134 |
-
],
|
| 135 |
-
[
|
| 136 |
-
"Calculez la force gravitationnelle entre deux masses de 10 kg chacune séparées par une distance de 1 mètre."
|
| 137 |
-
],
|
| 138 |
-
[
|
| 139 |
-
"Determina la formula molecolare di un composto che contiene il 40% di carbonio, il 6.67% di idrogeno e il 53.33% di ossigeno in massa."
|
| 140 |
-
],
|
| 141 |
-
[
|
| 142 |
-
"Explica la teoría del ciclo económico de Schumpeter y cómo se aplica a la economía moderna."
|
| 143 |
-
],
|
| 144 |
-
[
|
| 145 |
-
"Calcule a energia potencial gravitacional de um objeto de 5 kg a uma altura de 10 metros acima do solo (g = 9,8 m/s²)."
|
| 146 |
-
],
|
| 147 |
-
[
|
| 148 |
-
"Beweisen Sie, dass jede Primzahl der Form 4k+1 als Summe zweier Quadrate geschrieben werden kann."
|
| 149 |
-
],
|
| 150 |
-
[
|
| 151 |
-
"Tính nồng độ mol của dung dịch H₂SO₄ khi hoà tan 98 gam H₂SO₄ vào nước để được 1 lít dung dịch."
|
| 152 |
-
],
|
| 153 |
-
["케인스 경제학의 핵심 개념과 그것이 현대 경제 정책에 미치는 영향을 설명하십시오."],
|
| 154 |
-
["计算一个质量为2 kg的物体在3米高处的重力势能(g = 9.8 m/s²)。"],
|
| 155 |
-
[
|
| 156 |
-
'Identify the author of a novel that features a dystopian society where "Big Brother" watches over its citizens and the protagonist works for the Ministry of Truth.'
|
| 157 |
-
],
|
| 158 |
-
[
|
| 159 |
-
"Quel est le seul mammifère capable de voler activement, souvent associé à la nuit et capable d'écholocalisation?"
|
| 160 |
-
],
|
| 161 |
-
[
|
| 162 |
-
"Qual è l'opera letteraria italiana che narra il viaggio immaginario di un poeta attraverso Inferno, Purgatorio e Paradiso, guidato da Virgilio e Beatrice?"
|
| 163 |
-
],
|
| 164 |
-
[
|
| 165 |
-
"¿Qué insecto es conocido por su organización social compleja, su capacidad para producir miel y su comunicación mediante la danza?"
|
| 166 |
-
],
|
| 167 |
-
[
|
| 168 |
-
"Qual é o fenômeno atmosférico que ocorre quando uma massa de ar quente se encontra com uma massa de ar frio, resultando em uma violenta tempestade giratória?"
|
| 169 |
-
],
|
| 170 |
-
[
|
| 171 |
-
"Welches literarische Werk beschreibt die Geschichte eines jungen Mädchens, das durch einen Kaninchenbau in eine fantastische Welt voller skurriler Charaktere fällt?"
|
| 172 |
-
],
|
| 173 |
-
[
|
| 174 |
-
"Động vật nào có thể tái sinh toàn bộ cơ thể từ một mảnh nhỏ của chính nó, thường sống dưới nước và có thể có nhiều xúc tu?"
|
| 175 |
-
],
|
| 176 |
-
[
|
| 177 |
-
"어떤 자연 현상은 태양빛이 대기 중의 물방울에 반사되고 굴절되어 발생하며, 하늘에 나타나는 여러 색깔의 아치 형태를 띠나요?"
|
| 178 |
-
],
|
| 179 |
-
["这部文学作品讲述了一位绅士和他的侍从的冒险故事,他们在"],
|
| 180 |
-
[
|
| 181 |
-
"Can you derive the Euler-Lagrange equation from the principle of stationary action in classical mechanics?"
|
| 182 |
-
],
|
| 183 |
-
[
|
| 184 |
-
"Expliquez la notion de « différence ontologique » chez Martin Heidegger et son importance pour la phénoménologie."
|
| 185 |
-
],
|
| 186 |
-
[
|
| 187 |
-
"Qual è il significato simbolico del colore blu nei dipinti di Giotto di Bondone durante il Rinascimento?"
|
| 188 |
-
],
|
| 189 |
-
[
|
| 190 |
-
"¿Cómo afecta el cambio de código a la estructura gramatical en comunidades bilingües de habla español-inglés?"
|
| 191 |
-
],
|
| 192 |
-
[
|
| 193 |
-
"Qual é o impacto da política monetária não convencional no controle da inflação durante uma crise econômica?"
|
| 194 |
-
],
|
| 195 |
-
[
|
| 196 |
-
"Erklären Sie den Unterschied zwischen deterministischen und nicht-deterministischen endlichen Automaten und ihre Anwendungsbereiche."
|
| 197 |
-
],
|
| 198 |
-
[
|
| 199 |
-
"Giải thích cơ chế của quá trình phiên mã ngược (reverse transcription) và tầm quan trọng của nó trong nghiên cứu HIV/AIDS."
|
| 200 |
-
],
|
| 201 |
-
["조선시대 성리학이 한국 사회와 문화에 미친 영향을 설명하세요."],
|
| 202 |
-
["如何解释量子纠缠现象,以及它在量子计算中的潜在应用?"],
|
| 203 |
-
[
|
| 204 |
-
"How can you design a daily schedule that maximizes productivity for a remote worker who has multiple meetings and project deadlines?"
|
| 205 |
-
],
|
| 206 |
-
[
|
| 207 |
-
"Quels sont les meilleures stratégies pour gérer les conflits au sein d'une équipe multiculturelle travaillant sur un projet commun?"
|
| 208 |
-
],
|
| 209 |
-
[
|
| 210 |
-
"Quali sono i migliori consigli per mantenere un equilibrio tra vita professionale e vita privata in un ambiente lavorativo stressante?"
|
| 211 |
-
],
|
| 212 |
-
[
|
| 213 |
-
"¿Cómo se puede elaborar un plan financiero personal efectivo que incluya ahorro para la jubilación, inversión y manejo de deudas?"
|
| 214 |
-
],
|
| 215 |
-
[
|
| 216 |
-
"Quais são as melhores práticas para implementar metodologias ágeis em uma equipe de desenvolvimento de software?"
|
| 217 |
-
],
|
| 218 |
-
[
|
| 219 |
-
"Welche Strategien können verwendet werden, um ein starkes berufliches Netzwerk aufzubauen und zu pflegen, insbesondere in der Tech-Branche?"
|
| 220 |
-
],
|
| 221 |
-
[
|
| 222 |
-
"Những bước nào cần thiết để xây dựng một lộ trình phát triển sự nghiệp bền vững trong lĩnh vực công nghệ thông tin?"
|
| 223 |
-
],
|
| 224 |
-
["프로젝트�� 범위 변동을 효과적으로 관리하기 위한 최고의 방법은 무엇인가요?"],
|
| 225 |
-
["在快速变化的职场环境中,如何有效地实现工作与生活的平衡?"],
|
| 226 |
-
[
|
| 227 |
-
"Write an argumentative essay discussing the pros and cons of artificial intelligence in the workplace, including potential ethical concerns."
|
| 228 |
-
],
|
| 229 |
-
[
|
| 230 |
-
"Analysez les impacts sociaux et économiques de la digitalisation sur les petites entreprises en France."
|
| 231 |
-
],
|
| 232 |
-
[
|
| 233 |
-
"Scrivi un'email formale al direttore di una rivista per proporre un articolo sulla sostenibilità ambientale nelle città italiane."
|
| 234 |
-
],
|
| 235 |
-
[
|
| 236 |
-
"Elabora un informe detallado sobre los efectos del cambio climático en la biodiversidad de la región amazónica."
|
| 237 |
-
],
|
| 238 |
-
[
|
| 239 |
-
"Analise criticamente os principais pontos abordados no relatório anual do Banco Mundial sobre a pobreza global."
|
| 240 |
-
],
|
| 241 |
-
[
|
| 242 |
-
"Erstellen Sie eine technische Dokumentation für die Implementierung eines neuen Software-Features in einer bestehenden Anwendung."
|
| 243 |
-
],
|
| 244 |
-
[
|
| 245 |
-
"Viết một bài luận phân tích về tác động của cuộc cách mạng công nghiệp 4.0 đối với thị trường lao động Việt Nam."
|
| 246 |
-
],
|
| 247 |
-
[
|
| 248 |
-
"인공지능의 윤리적 문제에 대한 연구 논문을 작성하고, 다양한 사례를 통해 그 영향을 분석하세요."
|
| 249 |
-
],
|
| 250 |
-
["分析鲁迅的小说《阿Q正传》中反映的中国社会问题和作者的批判态度。"],
|
| 251 |
-
]
|
| 252 |
-
|
| 253 |
if not torch.cuda.is_available():
|
| 254 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 255 |
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
if torch.cuda.is_available():
|
| 258 |
-
model_id = "ghost-x/ghost-8b-beta"
|
| 259 |
hf_serect = os.getenv("HF_TOKEN", None)
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
device_map="auto",
|
| 263 |
torch_dtype=torch.bfloat16,
|
| 264 |
-
attn_implementation=
|
| 265 |
trust_remote_code=True,
|
| 266 |
token=hf_serect,
|
| 267 |
)
|
| 268 |
-
|
| 269 |
-
|
| 270 |
trust_remote_code=True,
|
| 271 |
token=hf_serect,
|
| 272 |
)
|
| 273 |
SelfExtend.apply(
|
| 274 |
-
|
| 275 |
group_size=16,
|
| 276 |
window_size=512,
|
| 277 |
enable_flash_attention=True,
|
| 278 |
flash_attention_impl="flash_attn",
|
| 279 |
)
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
-
|
|
|
|
| 283 |
supported_tools = json.dumps(
|
| 284 |
[
|
| 285 |
{
|
|
@@ -319,6 +228,22 @@ supported_tools = json.dumps(
|
|
| 319 |
|
| 320 |
@lru_cache(maxsize=128)
|
| 321 |
def extract_text_from_webpage(html_content):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
soup = BeautifulSoup(html_content, "html.parser")
|
| 323 |
for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
|
| 324 |
tag.extract()
|
|
@@ -330,6 +255,23 @@ def search_with_wikipedia(
|
|
| 330 |
query: str,
|
| 331 |
language: str = "en",
|
| 332 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
all_results = []
|
| 334 |
try:
|
| 335 |
wikipedia.set_lang(language)
|
|
@@ -346,9 +288,39 @@ def search_with_google(
|
|
| 346 |
language: str = "en",
|
| 347 |
ssl_verify: bool = None,
|
| 348 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
all_results = []
|
|
|
|
|
|
|
| 350 |
max_chars_per_page = 4096
|
|
|
|
|
|
|
| 351 |
with requests.Session() as session:
|
|
|
|
| 352 |
resp = session.get(
|
| 353 |
url="https://www.google.com/search",
|
| 354 |
headers={
|
|
@@ -363,36 +335,118 @@ def search_with_google(
|
|
| 363 |
timeout=timeout,
|
| 364 |
verify=ssl_verify,
|
| 365 |
)
|
|
|
|
|
|
|
| 366 |
resp.raise_for_status()
|
|
|
|
|
|
|
| 367 |
soup = BeautifulSoup(resp.text, "html.parser")
|
|
|
|
|
|
|
| 368 |
result_block = soup.find_all("div", attrs={"class": "g"})
|
|
|
|
|
|
|
| 369 |
for result in result_block:
|
|
|
|
| 370 |
link = result.find("a", href=True)
|
|
|
|
|
|
|
| 371 |
if link:
|
| 372 |
link = link["href"]
|
| 373 |
try:
|
|
|
|
| 374 |
webpage = session.get(
|
| 375 |
link,
|
| 376 |
headers={
|
| 377 |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"
|
| 378 |
},
|
| 379 |
)
|
|
|
|
|
|
|
| 380 |
webpage.raise_for_status()
|
|
|
|
|
|
|
| 381 |
visible_text = extract_text_from_webpage(webpage.text)
|
|
|
|
|
|
|
| 382 |
if len(visible_text) > max_chars_per_page:
|
| 383 |
visible_text = visible_text[:max_chars_per_page]
|
|
|
|
|
|
|
| 384 |
all_results.append({"link": link, "text": visible_text})
|
| 385 |
except requests.exceptions.RequestException as e:
|
|
|
|
| 386 |
print(f"Error fetching or processing {link}: {e}")
|
| 387 |
pass
|
| 388 |
else:
|
| 389 |
pass
|
|
|
|
|
|
|
| 390 |
return all_results
|
| 391 |
|
| 392 |
|
| 393 |
-
@
|
| 394 |
-
def
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
chat_history: list[tuple[str, str]],
|
| 397 |
allow_used_tools: bool = True,
|
| 398 |
system_prompt: str = "",
|
|
@@ -401,48 +455,44 @@ def generate(
|
|
| 401 |
top_p: float = 0.95,
|
| 402 |
top_k: int = 50,
|
| 403 |
repetition_penalty: float = 1.0,
|
| 404 |
-
|
| 405 |
) -> Iterator[str]:
|
| 406 |
-
#
|
| 407 |
-
# print("allow_used_tools:\n", allow_used_tools)
|
| 408 |
-
# print("system_prompt:\n", system_prompt)
|
| 409 |
-
# print("max_new_tokens:\n", max_new_tokens)
|
| 410 |
-
# print("temperature:\n", temperature)
|
| 411 |
-
|
| 412 |
def build_input_ids(
|
| 413 |
apply_tools: bool = None,
|
| 414 |
references=None,
|
| 415 |
):
|
| 416 |
conversation = []
|
|
|
|
|
|
|
| 417 |
if system_prompt:
|
| 418 |
conversation.append({"role": "system", "content": system_prompt})
|
|
|
|
|
|
|
| 419 |
if apply_tools is True:
|
| 420 |
conversation.append({"role": "tools", "content": supported_tools})
|
| 421 |
|
|
|
|
| 422 |
if references is None:
|
| 423 |
-
references = [
|
| 424 |
else:
|
| 425 |
-
references.insert(0,
|
| 426 |
|
| 427 |
if (
|
| 428 |
references is not None
|
| 429 |
and isinstance(references, list)
|
| 430 |
and len(references) > 0
|
| 431 |
):
|
|
|
|
|
|
|
| 432 |
conversation.append(
|
| 433 |
{
|
| 434 |
"role": "refs",
|
| 435 |
-
"content":
|
| 436 |
-
{
|
| 437 |
-
"instructions": "These are only general documents used for reference to give the most accurate and honest answers possible. Ignore it if it's irrelevant and don't overuse it.",
|
| 438 |
-
"documents": references,
|
| 439 |
-
},
|
| 440 |
-
indent=2,
|
| 441 |
-
ensure_ascii=False,
|
| 442 |
-
),
|
| 443 |
}
|
| 444 |
)
|
| 445 |
|
|
|
|
| 446 |
for user, assistant in chat_history:
|
| 447 |
conversation.extend(
|
| 448 |
[
|
|
@@ -450,12 +500,28 @@ def generate(
|
|
| 450 |
{"role": "assistant", "content": assistant},
|
| 451 |
]
|
| 452 |
)
|
| 453 |
-
conversation.append({"role": "user", "content": message})
|
| 454 |
|
| 455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
conversation, add_generation_prompt=True, return_tensors="pt"
|
| 457 |
)
|
| 458 |
-
input_ids = input_ids.to(
|
|
|
|
|
|
|
| 459 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 460 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 461 |
gr.Warning(
|
|
@@ -463,10 +529,13 @@ def generate(
|
|
| 463 |
)
|
| 464 |
return input_ids
|
| 465 |
|
|
|
|
| 466 |
def generate_chat_responses(
|
| 467 |
previous_response: str = None,
|
| 468 |
):
|
| 469 |
document_references = []
|
|
|
|
|
|
|
| 470 |
if previous_response is not None:
|
| 471 |
scheduled_tools_runs = None
|
| 472 |
try:
|
|
@@ -481,6 +550,7 @@ def generate(
|
|
| 481 |
print(e)
|
| 482 |
pass
|
| 483 |
|
|
|
|
| 484 |
if (
|
| 485 |
scheduled_tools_runs is not None
|
| 486 |
and scheduled_tools_runs["name"] == "search_on_internet"
|
|
@@ -488,9 +558,8 @@ def generate(
|
|
| 488 |
keyword = scheduled_tools_runs["arguments"]["keyword"]
|
| 489 |
search_type = scheduled_tools_runs["arguments"]["type"]
|
| 490 |
language = scheduled_tools_runs["arguments"]["language"]
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
)
|
| 494 |
if search_type == "wikipedia":
|
| 495 |
gr.Info(
|
| 496 |
"Searching for information on the Wikipedia.",
|
|
@@ -501,6 +570,7 @@ def generate(
|
|
| 501 |
search_with_wikipedia(query=keyword, language=language)
|
| 502 |
)
|
| 503 |
|
|
|
|
| 504 |
gr.Info("Searching for information on the Google.")
|
| 505 |
document_references.extend(
|
| 506 |
search_with_google(
|
|
@@ -509,20 +579,25 @@ def generate(
|
|
| 509 |
num_results=3,
|
| 510 |
)
|
| 511 |
)
|
| 512 |
-
print(
|
| 513 |
-
"document_references:", document_references
|
| 514 |
-
)
|
| 515 |
|
|
|
|
| 516 |
apply_tools = (
|
| 517 |
True if allow_used_tools is True and previous_response is None else False
|
| 518 |
)
|
|
|
|
|
|
|
| 519 |
input_ids = build_input_ids(
|
| 520 |
apply_tools=apply_tools,
|
| 521 |
references=document_references,
|
| 522 |
)
|
|
|
|
|
|
|
| 523 |
streamer = TextIteratorStreamer(
|
| 524 |
-
|
| 525 |
)
|
|
|
|
|
|
|
| 526 |
generate_kwargs = dict(
|
| 527 |
input_ids=input_ids,
|
| 528 |
streamer=streamer,
|
|
@@ -537,9 +612,14 @@ def generate(
|
|
| 537 |
generate_kwargs["top_p"] = top_p
|
| 538 |
generate_kwargs["top_k"] = top_k
|
| 539 |
|
| 540 |
-
|
|
|
|
| 541 |
t.start()
|
| 542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
state = {
|
| 544 |
"mark": None,
|
| 545 |
"respond": False,
|
|
@@ -556,6 +636,7 @@ def generate(
|
|
| 556 |
state["respond"] = True
|
| 557 |
yield "".join(outputs)
|
| 558 |
|
|
|
|
| 559 |
if (
|
| 560 |
apply_tools is True
|
| 561 |
and state["respond"] is False
|
|
@@ -564,22 +645,126 @@ def generate(
|
|
| 564 |
previous_response = "".join(outputs)
|
| 565 |
yield from generate_chat_responses(previous_response=previous_response)
|
| 566 |
|
|
|
|
| 567 |
yield from generate_chat_responses(previous_response=None)
|
| 568 |
|
| 569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
chatbot = gr.Chatbot(
|
| 571 |
-
height=500,
|
|
|
|
|
|
|
|
|
|
| 572 |
)
|
| 573 |
|
| 574 |
chat_interface = gr.ChatInterface(
|
| 575 |
fn=generate,
|
| 576 |
chatbot=chatbot,
|
| 577 |
fill_height=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
additional_inputs=[
|
| 579 |
gr.Checkbox(
|
| 580 |
-
label="Allow used tools (available: search on internet)",
|
|
|
|
| 581 |
),
|
| 582 |
-
gr.Textbox(label="System prompt", lines=6),
|
| 583 |
gr.Slider(
|
| 584 |
label="Max new tokens",
|
| 585 |
minimum=1,
|
|
@@ -616,23 +801,26 @@ chat_interface = gr.ChatInterface(
|
|
| 616 |
value=1.0,
|
| 617 |
),
|
| 618 |
gr.Textbox(
|
| 619 |
-
|
|
|
|
| 620 |
lines=1,
|
| 621 |
-
value="
|
|
|
|
|
|
|
| 622 |
visible=False,
|
| 623 |
),
|
| 624 |
],
|
| 625 |
stop_btn="Stop",
|
| 626 |
cache_examples=False,
|
| 627 |
-
examples=
|
| 628 |
-
examples_per_page=
|
| 629 |
concurrency_limit=100,
|
| 630 |
)
|
| 631 |
|
| 632 |
-
with gr.Blocks(fill_height=True, css="style.css") as demo:
|
| 633 |
gr.Markdown(DESCRIPTION)
|
| 634 |
chat_interface.render()
|
| 635 |
gr.Markdown(LICENSE)
|
| 636 |
|
| 637 |
if __name__ == "__main__":
|
| 638 |
-
demo.queue(
|
|
|
|
| 3 |
import subprocess
|
| 4 |
import json
|
| 5 |
import requests
|
| 6 |
+
import zlib
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
subprocess.run(
|
| 10 |
f"pip install flash-attn --no-build-isolation",
|
|
|
|
| 19 |
import gradio as gr
|
| 20 |
import spaces
|
| 21 |
import torch
|
| 22 |
+
import logging
|
| 23 |
import wikipedia
|
| 24 |
import time
|
| 25 |
import SelfExtend
|
| 26 |
+
from transformers import (
|
| 27 |
+
AutoModelForCausalLM,
|
| 28 |
+
AutoTokenizer,
|
| 29 |
+
AutoProcessor,
|
| 30 |
+
TextIteratorStreamer,
|
| 31 |
+
)
|
| 32 |
+
from transformers.dynamic_module_utils import get_imports
|
| 33 |
from bs4 import BeautifulSoup
|
| 34 |
from functools import lru_cache
|
| 35 |
|
| 36 |
+
logging.basicConfig(level=logging.INFO)
|
| 37 |
+
logger = logging.getLogger(__name__)
|
| 38 |
+
|
| 39 |
|
| 40 |
MAX_MAX_NEW_TOKENS = 8192
|
| 41 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 42 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "123392"))
|
| 43 |
|
| 44 |
+
DEFAULT_SYSTEM_PROMPT = """\
|
| 45 |
+
You are a helpful and intelligent AI, trained by Ghost X and named Ghost 8B Beta (often referred to as Ghost Beta).
|
| 46 |
+
You're known for your honesty, spreading positivity, and always striving to assist users. Your expertise lies in understanding their needs and providing insightful suggestions, drawing upon your knowledge and interests. If a query exceeds your understanding, you'll be upfront and state you're unsure, avoiding fabricated responses. You enjoy incorporating emojis to enhance interactions, but maintain a balanced approach for a natural flow. Let's engage in a meaningful conversation, keeping in mind the user's language.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
# DEFAULT_SYSTEM_PROMPT = """\
|
| 50 |
+
# You are a helpful and intelligent AI, trained by Ghost X and named Ghost 8B Beta (often referred to as 8B Beta).
|
| 51 |
+
# You're known for your honesty, spreading positivity, and always striving to assist users. Your expertise lies in understanding their needs and providing insightful suggestions, drawing upon your knowledge and interests. If a query exceeds your understanding, you'll be upfront and state you're unsure, avoiding fabricated responses. You enjoy incorporating emojis to enhance interactions, but maintain a balanced approach for a natural flow. Let's engage in a meaningful conversation, keeping in mind the user's language.
|
| 52 |
+
|
| 53 |
+
# A guide to dealing with extremely complex questions or challenges. Follow these steps to solve them:
|
| 54 |
+
# 1. Deconstructing Complexity
|
| 55 |
+
# Imagine a puzzle with intricate pieces. I'll present a challenging question. Your task: Break down this question into smaller, distinct parts. Label each part with a specific theme or aspect related to the problem. This will help us understand the multifaceted nature of the query and prepare for a structured solution.
|
| 56 |
+
# 2. Reconstructing Insights
|
| 57 |
+
# Once we've successfully dissected the problem into manageable components, assemble these parts like a puzzle. Focus on identifying connections, potential overlaps, and key information from each theme. The goal is to reconstruct a cohesive, well-rounded answer that addresses the original complexity of the question.
|
| 58 |
+
# """
|
| 59 |
+
|
| 60 |
+
HEAD = """
|
| 61 |
+
<script>
|
| 62 |
+
function schedule_updates() {
|
| 63 |
+
const client_info_element = document.querySelector("#client_info textarea");
|
| 64 |
+
client_info_element.value = "The current time is now: " + new Date().toLocaleString('en-US', {weekday: 'short'});
|
| 65 |
+
client_info_element.dispatchEvent(new Event('input'));
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
function bootstrap() {
|
| 69 |
+
setInterval(schedule_updates, 1000);
|
| 70 |
+
};
|
| 71 |
+
|
| 72 |
+
bootstrap();
|
| 73 |
+
</script>
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
DESCRIPTION = """\
|
| 77 |
+
# Ghost 8B Beta (β, 128k)
|
| 78 |
|
| 79 |
+
**Ghost 8B Beta** outperforms leading models like Llama 3.1 8B Instruct and GPT-3.5 Turbo in lc_winrate scores. It also surpasses Claude 3 Opus, Claude 3 Sonnet, GPT-4, and Mistral Large in AlpacaEval 2.0 winrate scores. The model offers two context length versions: [8k](https://huggingface.co/spaces/lamhieu/ghost-8b-beta-8k) and [128k](https://huggingface.co/spaces/lamhieu/ghost-8b-beta-128k), both with built-in multilingual function support.
|
| 80 |
|
| 81 |
+
Supported languages: 🇬🇧 English, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇨🇳 Chinese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇯🇵 Japanese, 🇷🇺 Russian, 🇵🇱 Polish, 🇳🇱 Dutch, 🇮🇳 Hindi, 🇹🇷 Turkish, 🇮🇩 Indonesian.
|
| 82 |
+
Note: with the image will be used another model to explain rather than using directly the Ghost 8B Beta model.
|
| 83 |
|
| 84 |
🗞️ **Updates**
|
| 85 |
+
* Aug 16, 2024: Released version 160824, expanding language support from 9 to 16 languages and improving math, reasoning, and instruction-following capabilities.
|
| 86 |
+
* Jul 23, 2024: Added internet search tools.
|
| 87 |
"""
|
| 88 |
|
| 89 |
|
| 90 |
PLACEHOLDER = """
|
| 91 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
| 92 |
+
<h1 style="font-size: 26px; margin-bottom: 2px; opacity: 0.20;">👋 Welcome to the Ghost 8B Beta Playground! 🎉</h1>
|
| 93 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.10;">Ask me anything and let's have some fun! 🤔💡</p>
|
| 94 |
</div>
|
| 95 |
"""
|
| 96 |
|
|
|
|
| 101 |
Ghost 8B Beta may give inaccurate information, including information about people, so please verify Ghost 8B Beta's answers. [Ghost 8B Beta](https://ghost-x.org/docs/models/ghost-8b-beta/) by [Ghost X](https://ghost-x.org).
|
| 102 |
"""
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
if not torch.cuda.is_available():
|
| 105 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 106 |
|
| 107 |
|
| 108 |
+
def workaround_fixed_get_imports(filename: str | os.PathLike) -> list[str]:
|
| 109 |
+
"""
|
| 110 |
+
Workaround for fixed get_imports function.
|
| 111 |
+
|
| 112 |
+
@args:
|
| 113 |
+
filename (str | os.PathLike): The filename or path to the file.
|
| 114 |
+
|
| 115 |
+
@returns:
|
| 116 |
+
list[str]: The list of imports.
|
| 117 |
+
|
| 118 |
+
@remarks:
|
| 119 |
+
- This function is a workaround for the fixed get_imports function.
|
| 120 |
+
- It checks if the filename ends with "/modeling_florence2.py".
|
| 121 |
+
- If it doesn't, it calls the original get_imports function.
|
| 122 |
+
- If it does, it calls the original get_imports function and removes the "flash_attn" import.
|
| 123 |
+
|
| 124 |
+
@usage:
|
| 125 |
+
```python
|
| 126 |
+
from unittest.mock import patch
|
| 127 |
+
image_torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 128 |
+
with patch(
|
| 129 |
+
"transformers.dynamic_module_utils.get_imports", workaround_fixed_get_imports
|
| 130 |
+
):
|
| 131 |
+
```
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
if not str(filename).endswith("/modeling_florence2.py"):
|
| 135 |
+
return get_imports(filename)
|
| 136 |
+
imports = get_imports(filename)
|
| 137 |
+
imports.remove("flash_attn")
|
| 138 |
+
return imports
|
| 139 |
+
|
| 140 |
+
|
| 141 |
if torch.cuda.is_available():
|
|
|
|
| 142 |
hf_serect = os.getenv("HF_TOKEN", None)
|
| 143 |
+
attn_implementation = "flash_attention_2"
|
| 144 |
+
|
| 145 |
+
chat_model_id = "ghost-x/ghost-8b-beta-1608"
|
| 146 |
+
chat_device = torch.device("cuda")
|
| 147 |
+
chat_model = AutoModelForCausalLM.from_pretrained(
|
| 148 |
+
chat_model_id,
|
| 149 |
device_map="auto",
|
| 150 |
torch_dtype=torch.bfloat16,
|
| 151 |
+
attn_implementation=attn_implementation,
|
| 152 |
trust_remote_code=True,
|
| 153 |
token=hf_serect,
|
| 154 |
)
|
| 155 |
+
chat_tokenizer = AutoTokenizer.from_pretrained(
|
| 156 |
+
chat_model_id,
|
| 157 |
trust_remote_code=True,
|
| 158 |
token=hf_serect,
|
| 159 |
)
|
| 160 |
SelfExtend.apply(
|
| 161 |
+
chat_model,
|
| 162 |
group_size=16,
|
| 163 |
window_size=512,
|
| 164 |
enable_flash_attention=True,
|
| 165 |
flash_attention_impl="flash_attn",
|
| 166 |
)
|
| 167 |
+
chat_model.generation_config.max_length = 123392
|
| 168 |
+
|
| 169 |
+
image_model_id = "microsoft/Florence-2-large"
|
| 170 |
+
# image_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 171 |
+
# image_torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 172 |
+
image_device = "cpu"
|
| 173 |
+
image_torch_dtype = torch.float32
|
| 174 |
+
image_model = (
|
| 175 |
+
AutoModelForCausalLM.from_pretrained(
|
| 176 |
+
image_model_id,
|
| 177 |
+
torch_dtype=image_torch_dtype,
|
| 178 |
+
trust_remote_code=True,
|
| 179 |
+
token=hf_serect,
|
| 180 |
+
)
|
| 181 |
+
.to(image_device)
|
| 182 |
+
.eval()
|
| 183 |
+
)
|
| 184 |
+
image_processor = AutoProcessor.from_pretrained(
|
| 185 |
+
image_model_id,
|
| 186 |
+
trust_remote_code=True,
|
| 187 |
+
token=hf_serect,
|
| 188 |
+
)
|
| 189 |
|
| 190 |
+
|
| 191 |
+
waiting_tools_timeout = 5
|
| 192 |
supported_tools = json.dumps(
|
| 193 |
[
|
| 194 |
{
|
|
|
|
| 228 |
|
| 229 |
@lru_cache(maxsize=128)
|
| 230 |
def extract_text_from_webpage(html_content):
|
| 231 |
+
"""
|
| 232 |
+
Extracts visible text from an HTML webpage.
|
| 233 |
+
|
| 234 |
+
@args:
|
| 235 |
+
html_content (str): The HTML content of the webpage.
|
| 236 |
+
|
| 237 |
+
@returns:
|
| 238 |
+
str: The visible text extracted from the webpage.
|
| 239 |
+
|
| 240 |
+
@remarks:
|
| 241 |
+
- This function uses the BeautifulSoup library to parse the HTML content.
|
| 242 |
+
- It removes certain tags (script, style, header, footer, nav, form, svg) from the parsed HTML.
|
| 243 |
+
- The remaining visible text is then extracted using the `get_text` method of BeautifulSoup.
|
| 244 |
+
- The extracted text is stripped of leading/trailing whitespace and separated by a single space.
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
soup = BeautifulSoup(html_content, "html.parser")
|
| 248 |
for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
|
| 249 |
tag.extract()
|
|
|
|
| 255 |
query: str,
|
| 256 |
language: str = "en",
|
| 257 |
):
|
| 258 |
+
"""
|
| 259 |
+
Search for a given query on Wikipedia and return the summary.
|
| 260 |
+
|
| 261 |
+
@args:
|
| 262 |
+
query (str): The search query.
|
| 263 |
+
language (str, optional): The language code for the Wikipedia page. Defaults to "en".
|
| 264 |
+
|
| 265 |
+
@returns:
|
| 266 |
+
list: A list containing the summary of the Wikipedia page.
|
| 267 |
+
|
| 268 |
+
@remarks:
|
| 269 |
+
- This function uses the Wikipedia API to search for the given query.
|
| 270 |
+
- The language parameter determines the language of the Wikipedia page to search.
|
| 271 |
+
- If the search is successful, the function returns a list containing the summary of the page.
|
| 272 |
+
- If an exception occurs during the search, an empty list is returned.
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
all_results = []
|
| 276 |
try:
|
| 277 |
wikipedia.set_lang(language)
|
|
|
|
| 288 |
language: str = "en",
|
| 289 |
ssl_verify: bool = None,
|
| 290 |
):
|
| 291 |
+
"""
|
| 292 |
+
Searches Google for the given query and returns a list of search results.
|
| 293 |
+
|
| 294 |
+
@args:
|
| 295 |
+
query (str): The search query.
|
| 296 |
+
num_results (int, optional): The number of search results to retrieve. Defaults to 3.
|
| 297 |
+
timeout (int, optional): The timeout value for the HTTP requests. Defaults to 5.
|
| 298 |
+
language (str, optional): The language for the search results. Defaults to "en".
|
| 299 |
+
ssl_verify (bool, optional): Whether to verify SSL certificates. Defaults to None.
|
| 300 |
+
|
| 301 |
+
@returns:
|
| 302 |
+
list: A list of dictionaries containing the link and visible text of each search result.
|
| 303 |
+
|
| 304 |
+
@remarks:
|
| 305 |
+
- This function uses the requests library to send HTTP requests to Google.
|
| 306 |
+
- It sets the User-Agent header to mimic a Firefox browser.
|
| 307 |
+
- The search results are retrieved from the HTML response using BeautifulSoup.
|
| 308 |
+
- Each search result is represented as a dictionary with "link" and "text" keys.
|
| 309 |
+
- The "link" key contains the URL of the search result.
|
| 310 |
+
- The "text" key contains the visible text extracted from the search result webpage.
|
| 311 |
+
- If the visible text exceeds 4096 characters, it is truncated to that length.
|
| 312 |
+
- If an error occurs while fetching or processing a search result, it is printed and ignored.
|
| 313 |
+
"""
|
| 314 |
+
|
| 315 |
+
# Initialize an empty list to store the search results
|
| 316 |
all_results = []
|
| 317 |
+
|
| 318 |
+
# Define the maximum number of characters per page
|
| 319 |
max_chars_per_page = 4096
|
| 320 |
+
|
| 321 |
+
# Create a session object to send HTTP requests
|
| 322 |
with requests.Session() as session:
|
| 323 |
+
# Send a GET request to Google search with the specified query parameters
|
| 324 |
resp = session.get(
|
| 325 |
url="https://www.google.com/search",
|
| 326 |
headers={
|
|
|
|
| 335 |
timeout=timeout,
|
| 336 |
verify=ssl_verify,
|
| 337 |
)
|
| 338 |
+
|
| 339 |
+
# Raise an exception if the response status code is not successful
|
| 340 |
resp.raise_for_status()
|
| 341 |
+
|
| 342 |
+
# Parse the HTML response using BeautifulSoup
|
| 343 |
soup = BeautifulSoup(resp.text, "html.parser")
|
| 344 |
+
|
| 345 |
+
# Find all the result blocks in the HTML
|
| 346 |
result_block = soup.find_all("div", attrs={"class": "g"})
|
| 347 |
+
|
| 348 |
+
# Iterate over each result block
|
| 349 |
for result in result_block:
|
| 350 |
+
# Find the link element within the result block
|
| 351 |
link = result.find("a", href=True)
|
| 352 |
+
|
| 353 |
+
# If a link is found, extract the URL and process the webpage
|
| 354 |
if link:
|
| 355 |
link = link["href"]
|
| 356 |
try:
|
| 357 |
+
# Send a GET request to the link URL
|
| 358 |
webpage = session.get(
|
| 359 |
link,
|
| 360 |
headers={
|
| 361 |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"
|
| 362 |
},
|
| 363 |
)
|
| 364 |
+
|
| 365 |
+
# Raise an exception if the response status code is not successful
|
| 366 |
webpage.raise_for_status()
|
| 367 |
+
|
| 368 |
+
# Extract the visible text from the webpage
|
| 369 |
visible_text = extract_text_from_webpage(webpage.text)
|
| 370 |
+
|
| 371 |
+
# Truncate the visible text if it exceeds the maximum number of characters per page
|
| 372 |
if len(visible_text) > max_chars_per_page:
|
| 373 |
visible_text = visible_text[:max_chars_per_page]
|
| 374 |
+
|
| 375 |
+
# Append the link and visible text to the search results list
|
| 376 |
all_results.append({"link": link, "text": visible_text})
|
| 377 |
except requests.exceptions.RequestException as e:
|
| 378 |
+
# Print an error message if there is an error fetching or processing the link
|
| 379 |
print(f"Error fetching or processing {link}: {e}")
|
| 380 |
pass
|
| 381 |
else:
|
| 382 |
pass
|
| 383 |
+
|
| 384 |
+
# Return the search results
|
| 385 |
return all_results
|
| 386 |
|
| 387 |
|
| 388 |
+
@lru_cache(maxsize=128)
|
| 389 |
+
def extract_text_from_image(file: str) -> str:
|
| 390 |
+
"""
|
| 391 |
+
Extracts text from an image file.
|
| 392 |
+
|
| 393 |
+
@args:
|
| 394 |
+
file (str): The path or URL of the image file.
|
| 395 |
+
|
| 396 |
+
@returns:
|
| 397 |
+
str: The extracted text from the image.
|
| 398 |
+
|
| 399 |
+
@remarks:
|
| 400 |
+
- This function uses an LRU cache to store previously processed images for faster retrieval.
|
| 401 |
+
- The image file can be either a local file path or a URL.
|
| 402 |
+
- The function opens the image file using the PIL library.
|
| 403 |
+
- The function processes the image using an image processor.
|
| 404 |
+
- The processed image is then passed to a text generation model to generate text.
|
| 405 |
+
- The generated text is post-processed to obtain the final extracted text.
|
| 406 |
+
"""
|
| 407 |
+
# Define the task and load the image
|
| 408 |
+
task = "<MORE_DETAILED_CAPTION>"
|
| 409 |
+
image = Image.open(
|
| 410 |
+
requests.get(file, stream=True).raw
|
| 411 |
+
if file.startswith("http")
|
| 412 |
+
else open(file, "rb")
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
if image.mode != "RGB":
|
| 416 |
+
image = image.convert("RGB")
|
| 417 |
+
|
| 418 |
+
# Preprocess the image using the image processor
|
| 419 |
+
inputs = image_processor(text=task, images=image, return_tensors="pt").to(
|
| 420 |
+
"cpu", image_torch_dtype
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# Generate text based on the input image
|
| 424 |
+
generated_ids = image_model.generate(
|
| 425 |
+
input_ids=inputs["input_ids"],
|
| 426 |
+
pixel_values=inputs["pixel_values"],
|
| 427 |
+
max_new_tokens=1024,
|
| 428 |
+
num_beams=3,
|
| 429 |
+
do_sample=False,
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# Decode the generated text and post-process the answer
|
| 433 |
+
generated_text = image_processor.batch_decode(
|
| 434 |
+
generated_ids, skip_special_tokens=False
|
| 435 |
+
)[0]
|
| 436 |
+
parsed_answer = image_processor.post_process_generation(
|
| 437 |
+
generated_text,
|
| 438 |
+
task=task,
|
| 439 |
+
image_size=(image.width, image.height),
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
# Return the parsed answer for the specified task
|
| 443 |
+
return parsed_answer[task]
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
@spaces.GPU(duration=90)
|
| 447 |
+
def generate_chat(
|
| 448 |
+
uuid: str,
|
| 449 |
+
message: dict,
|
| 450 |
chat_history: list[tuple[str, str]],
|
| 451 |
allow_used_tools: bool = True,
|
| 452 |
system_prompt: str = "",
|
|
|
|
| 455 |
top_p: float = 0.95,
|
| 456 |
top_k: int = 50,
|
| 457 |
repetition_penalty: float = 1.0,
|
| 458 |
+
client_info: str = None,
|
| 459 |
) -> Iterator[str]:
|
| 460 |
+
# Build the input_ids for the chat conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
def build_input_ids(
|
| 462 |
apply_tools: bool = None,
|
| 463 |
references=None,
|
| 464 |
):
|
| 465 |
conversation = []
|
| 466 |
+
|
| 467 |
+
# Add the system prompt to the conversation
|
| 468 |
if system_prompt:
|
| 469 |
conversation.append({"role": "system", "content": system_prompt})
|
| 470 |
+
|
| 471 |
+
# Add the tools role to the conversation if apply_tools is True
|
| 472 |
if apply_tools is True:
|
| 473 |
conversation.append({"role": "tools", "content": supported_tools})
|
| 474 |
|
| 475 |
+
# Add the references role to the conversation
|
| 476 |
if references is None:
|
| 477 |
+
references = [client_info]
|
| 478 |
else:
|
| 479 |
+
references.insert(0, client_info)
|
| 480 |
|
| 481 |
if (
|
| 482 |
references is not None
|
| 483 |
and isinstance(references, list)
|
| 484 |
and len(references) > 0
|
| 485 |
):
|
| 486 |
+
formatted_references = f"Analyze the provided references, extract relevant information to provide accurate and objective feedback. This reference information may include: conversation context, assistant or user memories, reasoning guides, problem-solving suggestions, assistant rules, etc.\nIf the reference is not relevant, ignore it. Try to have a balanced approach, avoiding over-reliance on the documentation."
|
| 487 |
+
formatted_references += "\n\n" + ("\n\n".join(references))
|
| 488 |
conversation.append(
|
| 489 |
{
|
| 490 |
"role": "refs",
|
| 491 |
+
"content": formatted_references,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
}
|
| 493 |
)
|
| 494 |
|
| 495 |
+
# Add the chat history to the conversation
|
| 496 |
for user, assistant in chat_history:
|
| 497 |
conversation.extend(
|
| 498 |
[
|
|
|
|
| 500 |
{"role": "assistant", "content": assistant},
|
| 501 |
]
|
| 502 |
)
|
|
|
|
| 503 |
|
| 504 |
+
# Add the user message with image attachments to the conversation
|
| 505 |
+
conversation.append(
|
| 506 |
+
{
|
| 507 |
+
"role": "user",
|
| 508 |
+
"content": (
|
| 509 |
+
f"{' & '.join(message['attachments'])}\n\n{message['text']}"
|
| 510 |
+
if "attachments" in message and len(message["attachments"]) > 0
|
| 511 |
+
else f"{message['text']}"
|
| 512 |
+
),
|
| 513 |
+
}
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
logger.debug(f"UUID: {uuid} - Conversation: {conversation}")
|
| 517 |
+
|
| 518 |
+
# Apply the chat template to convert the conversation into input_ids
|
| 519 |
+
input_ids = chat_tokenizer.apply_chat_template(
|
| 520 |
conversation, add_generation_prompt=True, return_tensors="pt"
|
| 521 |
)
|
| 522 |
+
input_ids = input_ids.to(chat_model.device)
|
| 523 |
+
|
| 524 |
+
# Trim the input_ids if it exceeds the maximum token length
|
| 525 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 526 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 527 |
gr.Warning(
|
|
|
|
| 529 |
)
|
| 530 |
return input_ids
|
| 531 |
|
| 532 |
+
# Generate chat responses based on the input_ids
|
| 533 |
def generate_chat_responses(
|
| 534 |
previous_response: str = None,
|
| 535 |
):
|
| 536 |
document_references = []
|
| 537 |
+
|
| 538 |
+
# Check if the previous response contains scheduled tool runs
|
| 539 |
if previous_response is not None:
|
| 540 |
scheduled_tools_runs = None
|
| 541 |
try:
|
|
|
|
| 550 |
print(e)
|
| 551 |
pass
|
| 552 |
|
| 553 |
+
# If scheduled tool runs exist, perform the corresponding searches
|
| 554 |
if (
|
| 555 |
scheduled_tools_runs is not None
|
| 556 |
and scheduled_tools_runs["name"] == "search_on_internet"
|
|
|
|
| 558 |
keyword = scheduled_tools_runs["arguments"]["keyword"]
|
| 559 |
search_type = scheduled_tools_runs["arguments"]["type"]
|
| 560 |
language = scheduled_tools_runs["arguments"]["language"]
|
| 561 |
+
|
| 562 |
+
# Search on Wikipedia if the search type is "wikipedia"
|
|
|
|
| 563 |
if search_type == "wikipedia":
|
| 564 |
gr.Info(
|
| 565 |
"Searching for information on the Wikipedia.",
|
|
|
|
| 570 |
search_with_wikipedia(query=keyword, language=language)
|
| 571 |
)
|
| 572 |
|
| 573 |
+
# Search on Google
|
| 574 |
gr.Info("Searching for information on the Google.")
|
| 575 |
document_references.extend(
|
| 576 |
search_with_google(
|
|
|
|
| 579 |
num_results=3,
|
| 580 |
)
|
| 581 |
)
|
| 582 |
+
print("document_references:", document_references)
|
|
|
|
|
|
|
| 583 |
|
| 584 |
+
# Determine if tools should be applied based on the allow_used_tools flag
|
| 585 |
apply_tools = (
|
| 586 |
True if allow_used_tools is True and previous_response is None else False
|
| 587 |
)
|
| 588 |
+
|
| 589 |
+
# Build the input_ids for the chat conversation
|
| 590 |
input_ids = build_input_ids(
|
| 591 |
apply_tools=apply_tools,
|
| 592 |
references=document_references,
|
| 593 |
)
|
| 594 |
+
|
| 595 |
+
# Create a TextIteratorStreamer to generate chat responses
|
| 596 |
streamer = TextIteratorStreamer(
|
| 597 |
+
chat_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
| 598 |
)
|
| 599 |
+
|
| 600 |
+
# Set the generation parameters
|
| 601 |
generate_kwargs = dict(
|
| 602 |
input_ids=input_ids,
|
| 603 |
streamer=streamer,
|
|
|
|
| 612 |
generate_kwargs["top_p"] = top_p
|
| 613 |
generate_kwargs["top_k"] = top_k
|
| 614 |
|
| 615 |
+
# Start the generation process in a separate thread
|
| 616 |
+
t = Thread(target=chat_model.generate, kwargs=generate_kwargs)
|
| 617 |
t.start()
|
| 618 |
|
| 619 |
+
logger.debug(
|
| 620 |
+
f"UUID: {uuid} - Is apply tools: {apply_tools} - Is apply documents: {len(document_references) > 0} - Is previous response: {previous_response is not None} - Start generating chat responses"
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
state = {
|
| 624 |
"mark": None,
|
| 625 |
"respond": False,
|
|
|
|
| 636 |
state["respond"] = True
|
| 637 |
yield "".join(outputs)
|
| 638 |
|
| 639 |
+
# If tools are applied and no response is generated within the timeout, continue generating chat responses
|
| 640 |
if (
|
| 641 |
apply_tools is True
|
| 642 |
and state["respond"] is False
|
|
|
|
| 645 |
previous_response = "".join(outputs)
|
| 646 |
yield from generate_chat_responses(previous_response=previous_response)
|
| 647 |
|
| 648 |
+
# Yield the generated chat responses
|
| 649 |
yield from generate_chat_responses(previous_response=None)
|
| 650 |
|
| 651 |
|
| 652 |
+
def generate(
|
| 653 |
+
message: dict,
|
| 654 |
+
chat_history: list[tuple[str, str]],
|
| 655 |
+
allow_used_tools: bool = True,
|
| 656 |
+
system_prompt: str = "",
|
| 657 |
+
max_new_tokens: int = 1536,
|
| 658 |
+
temperature: float = 0.4,
|
| 659 |
+
top_p: float = 0.95,
|
| 660 |
+
top_k: int = 50,
|
| 661 |
+
repetition_penalty: float = 1.0,
|
| 662 |
+
client_info: str = None,
|
| 663 |
+
) -> Iterator[str]:
|
| 664 |
+
# Generate a unique identifier using the The current time is now
|
| 665 |
+
uuid = zlib.crc32(str.encode(str(time.time())))
|
| 666 |
+
logger.info(f"UUID: {uuid} - Starting image text extraction process")
|
| 667 |
+
|
| 668 |
+
# Limit the number of files to process to 2
|
| 669 |
+
if len(message["files"]) > 2:
|
| 670 |
+
gr.Warning("Only the first 2 images will be processed.")
|
| 671 |
+
|
| 672 |
+
message["files"] = message["files"][:2]
|
| 673 |
+
|
| 674 |
+
# Extract text from each image file and replace the file path with an attachment tag containing the extracted text
|
| 675 |
+
message["attachments"] = handle_file_extraction(
|
| 676 |
+
files=list(message["files"]), uuid=uuid
|
| 677 |
+
)
|
| 678 |
+
logger.debug(f"UUID: {uuid} - Image text extraction process completed")
|
| 679 |
+
|
| 680 |
+
logger.debug(f"UUID: {uuid} - Previous chat history: {chat_history}")
|
| 681 |
+
for idx, chat_pair in enumerate(chat_history):
|
| 682 |
+
user_message, assistant_message = chat_pair
|
| 683 |
+
if not isinstance(user_message, str) and assistant_message is None:
|
| 684 |
+
text_descriptions = handle_file_extraction(
|
| 685 |
+
files=list(user_message), uuid=uuid
|
| 686 |
+
)
|
| 687 |
+
chat_input = (
|
| 688 |
+
f"{' & '.join(text_descriptions)}\n\n{chat_history[idx + 1][0]}"
|
| 689 |
+
)
|
| 690 |
+
chat_history[idx + 1][0] = chat_input
|
| 691 |
+
chat_history[idx] = [None, None]
|
| 692 |
+
logger.debug(
|
| 693 |
+
f"UUID: {uuid} - Updated chat history: {chat_history} - Updated chat input: {chat_input}"
|
| 694 |
+
)
|
| 695 |
+
|
| 696 |
+
chat_history = list(
|
| 697 |
+
filter(lambda x: x[0] is not None and x[1] is not None, chat_history)
|
| 698 |
+
)
|
| 699 |
+
logger.debug(f"UUID: {uuid} - Filtered chat history: {chat_history}")
|
| 700 |
+
|
| 701 |
+
yield from generate_chat(
|
| 702 |
+
uuid=uuid,
|
| 703 |
+
message=message,
|
| 704 |
+
chat_history=chat_history,
|
| 705 |
+
allow_used_tools=allow_used_tools,
|
| 706 |
+
system_prompt=system_prompt,
|
| 707 |
+
max_new_tokens=max_new_tokens,
|
| 708 |
+
temperature=temperature,
|
| 709 |
+
top_p=top_p,
|
| 710 |
+
top_k=top_k,
|
| 711 |
+
repetition_penalty=repetition_penalty,
|
| 712 |
+
client_info=client_info,
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
def handle_file_extraction(files: list[str], uuid: str):
|
| 717 |
+
"""
|
| 718 |
+
Extracts text from images in the given message's files and returns a list of attachments.
|
| 719 |
+
|
| 720 |
+
@args:
|
| 721 |
+
message (dict): The message containing files to extract text from.
|
| 722 |
+
uuid (str): The UUID associated with the extraction process.
|
| 723 |
+
|
| 724 |
+
@returns:
|
| 725 |
+
list: A list of attachments, each represented as a string.
|
| 726 |
+
|
| 727 |
+
@memarks:
|
| 728 |
+
- This function iterates over the files in the message and extracts text from each image file.
|
| 729 |
+
- The extracted text is logged along with the UUID and file information.
|
| 730 |
+
- The extracted text is then added to the attachments list as a string representation of an attachment.
|
| 731 |
+
- The attachments list is returned at the end of the function.
|
| 732 |
+
"""
|
| 733 |
+
|
| 734 |
+
attachments = []
|
| 735 |
+
for idx, file_to_extract in enumerate(files):
|
| 736 |
+
extracted_text = extract_text_from_image(file=file_to_extract)
|
| 737 |
+
logger.info(
|
| 738 |
+
f"UUID: {uuid} - File: {file_to_extract} - Extracted text: {extracted_text}"
|
| 739 |
+
)
|
| 740 |
+
attachments.append(
|
| 741 |
+
f'<attachment index="{idx}" type="image" description="{extracted_text}" />'
|
| 742 |
+
)
|
| 743 |
+
return attachments
|
| 744 |
+
|
| 745 |
+
|
| 746 |
chatbot = gr.Chatbot(
|
| 747 |
+
height=500,
|
| 748 |
+
placeholder=PLACEHOLDER,
|
| 749 |
+
label="Ghost 8B Beta (β, 128k)",
|
| 750 |
+
show_copy_button=True,
|
| 751 |
)
|
| 752 |
|
| 753 |
chat_interface = gr.ChatInterface(
|
| 754 |
fn=generate,
|
| 755 |
chatbot=chatbot,
|
| 756 |
fill_height=True,
|
| 757 |
+
multimodal=True,
|
| 758 |
+
textbox=gr.MultimodalTextbox(
|
| 759 |
+
file_types=["image"],
|
| 760 |
+
placeholder="Type a message...",
|
| 761 |
+
),
|
| 762 |
additional_inputs=[
|
| 763 |
gr.Checkbox(
|
| 764 |
+
label="Allow used tools (available: search on internet)",
|
| 765 |
+
value=False,
|
| 766 |
),
|
| 767 |
+
gr.Textbox(label="System prompt", lines=6, value=DEFAULT_SYSTEM_PROMPT),
|
| 768 |
gr.Slider(
|
| 769 |
label="Max new tokens",
|
| 770 |
minimum=1,
|
|
|
|
| 801 |
value=1.0,
|
| 802 |
),
|
| 803 |
gr.Textbox(
|
| 804 |
+
elem_id="client_info",
|
| 805 |
+
label="Client info",
|
| 806 |
lines=1,
|
| 807 |
+
value="The current time is now: {}".format(
|
| 808 |
+
time.strftime("%A, %D %B %Y %H:%M:%S")
|
| 809 |
+
),
|
| 810 |
visible=False,
|
| 811 |
),
|
| 812 |
],
|
| 813 |
stop_btn="Stop",
|
| 814 |
cache_examples=False,
|
| 815 |
+
examples=[],
|
| 816 |
+
examples_per_page=10,
|
| 817 |
concurrency_limit=100,
|
| 818 |
)
|
| 819 |
|
| 820 |
+
with gr.Blocks(fill_height=True, css="style.css", head=HEAD) as demo:
|
| 821 |
gr.Markdown(DESCRIPTION)
|
| 822 |
chat_interface.render()
|
| 823 |
gr.Markdown(LICENSE)
|
| 824 |
|
| 825 |
if __name__ == "__main__":
|
| 826 |
+
demo.queue().launch(share=True)
|
requirements.txt
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
accelerate
|
| 2 |
-
bitsandbytes
|
| 3 |
-
gradio
|
|
|
|
|
|
|
|
|
|
| 4 |
scipy==1.13.0
|
| 5 |
sentencepiece==0.2.0
|
| 6 |
-
spaces==0.28.3
|
| 7 |
torch==2.0.0
|
| 8 |
-
transformers==4.41.0
|
| 9 |
beautifulsoup4>=4.9
|
| 10 |
wikipedia==1.4.0
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
bitsandbytes
|
| 3 |
+
gradio
|
| 4 |
+
spaces
|
| 5 |
+
transformers
|
| 6 |
+
timm
|
| 7 |
scipy==1.13.0
|
| 8 |
sentencepiece==0.2.0
|
|
|
|
| 9 |
torch==2.0.0
|
|
|
|
| 10 |
beautifulsoup4>=4.9
|
| 11 |
wikipedia==1.4.0
|