Commit
·
01ca586
1
Parent(s):
b387020
tabs refactor
Browse files- app.py +21 -165
- gradio_tabs.py +293 -0
- graph_visualizations.py +0 -136
- task_visualizations.py +5 -6
- text_visualization.py +80 -32
app.py
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import logging
|
4 |
-
import re
|
5 |
from task_visualizations import TaskVisualizations
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
|
@@ -28,107 +32,6 @@ def load_repo_df(repo_representations_path):
|
|
28 |
)
|
29 |
|
30 |
|
31 |
-
def display_representations(repo, representation1, representation2):
|
32 |
-
repo_data = repos_df[repos_df["repo_name"] == repo]
|
33 |
-
logging.info(f"repo_data: {repo_data}")
|
34 |
-
text1 = (
|
35 |
-
repo_data[repo_data["representation"] == representation1]["text"].iloc[0]
|
36 |
-
if not repo_data[repo_data["representation"] == representation1].empty
|
37 |
-
else "No data available"
|
38 |
-
)
|
39 |
-
text2 = (
|
40 |
-
repo_data[repo_data["representation"] == representation2]["text"].iloc[0]
|
41 |
-
if not repo_data[repo_data["representation"] == representation2].empty
|
42 |
-
else "No data available"
|
43 |
-
)
|
44 |
-
|
45 |
-
return text1, text2
|
46 |
-
|
47 |
-
|
48 |
-
def get_representation_wordclouds(representations, repos_df):
|
49 |
-
wordclouds = dict()
|
50 |
-
for representation in representations:
|
51 |
-
texts = list(repos_df[repos_df["representation"] == representation]["text"])
|
52 |
-
wordclouds[representation] = WordCloudExtractor().extract_wordcloud_image(texts)
|
53 |
-
return wordclouds
|
54 |
-
|
55 |
-
|
56 |
-
def setup_repository_representations_tab(repos, representation_types):
|
57 |
-
|
58 |
-
wordcloud_dict = get_representation_wordclouds(representation_types, repos_df)
|
59 |
-
gr.Markdown("## Wordclouds")
|
60 |
-
gr.Gallery(
|
61 |
-
[
|
62 |
-
(wordcloud, representation_type)
|
63 |
-
for representation_type, wordcloud in wordcloud_dict.items()
|
64 |
-
],
|
65 |
-
columns=[3],
|
66 |
-
rows=[4],
|
67 |
-
height=300,
|
68 |
-
)
|
69 |
-
|
70 |
-
gr.Markdown("Select a repository and two representation types to compare them.")
|
71 |
-
with gr.Row():
|
72 |
-
repo = gr.Dropdown(choices=repos, label="Repository", value=repos[0])
|
73 |
-
representation1 = gr.Dropdown(
|
74 |
-
choices=representation_types, label="Representation 1", value="readme"
|
75 |
-
)
|
76 |
-
representation2 = gr.Dropdown(
|
77 |
-
choices=representation_types,
|
78 |
-
label="Representation 2",
|
79 |
-
value="generated_readme",
|
80 |
-
)
|
81 |
-
|
82 |
-
with gr.Row():
|
83 |
-
with gr.Column(
|
84 |
-
elem_id="column1",
|
85 |
-
variant="panel",
|
86 |
-
scale=1,
|
87 |
-
min_width=300,
|
88 |
-
):
|
89 |
-
text1 = gr.Markdown()
|
90 |
-
with gr.Column(
|
91 |
-
elem_id="column2",
|
92 |
-
variant="panel",
|
93 |
-
scale=1,
|
94 |
-
min_width=300,
|
95 |
-
):
|
96 |
-
text2 = gr.Markdown()
|
97 |
-
|
98 |
-
def update_representations(repo, representation1, representation2):
|
99 |
-
text1_content, text2_content = display_representations(
|
100 |
-
repo, representation1, representation2
|
101 |
-
)
|
102 |
-
return (
|
103 |
-
f"### Representation 1: {representation1}\n\n{text1_content}",
|
104 |
-
f"### Representation 2: {representation2}\n\n{text2_content}",
|
105 |
-
)
|
106 |
-
|
107 |
-
# Initial call to populate textboxes with default values
|
108 |
-
text1.value, text2.value = update_representations(
|
109 |
-
repos[0], "readme", "generated_readme"
|
110 |
-
)
|
111 |
-
|
112 |
-
for component in [repo, representation1, representation2]:
|
113 |
-
component.change(
|
114 |
-
fn=update_representations,
|
115 |
-
inputs=[repo, representation1, representation2],
|
116 |
-
outputs=[text1, text2],
|
117 |
-
)
|
118 |
-
|
119 |
-
|
120 |
-
def load_embeddings_intro_description():
|
121 |
-
return """
|
122 |
-
The following plots show embeddings obtained with MPNet sentence transformer after applying 2d UMAP algorithm for dimensionality reduction.
|
123 |
-
|
124 |
-
In the first scatterplot we display PapersWithCode tasks that are colored by area.
|
125 |
-
"""
|
126 |
-
|
127 |
-
|
128 |
-
def load_embeddings_description():
|
129 |
-
return
|
130 |
-
|
131 |
-
|
132 |
## main
|
133 |
repos_df = load_repo_df(AppConfig.repo_representations_path)
|
134 |
repos = list(repos_df["repo_name"].unique())
|
@@ -145,6 +48,14 @@ display_df["is_task"] = display_df["representation"] == "task"
|
|
145 |
embedding_visualizer = EmbeddingVisualizer(display_df=display_df)
|
146 |
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
descriptions = {
|
149 |
"intro": load_embeddings_intro_description(),
|
150 |
"Basic representations": """Now we show the embeddings of tasks and repos, using various texts or representations.
|
@@ -167,68 +78,13 @@ descriptions = {
|
|
167 |
|
168 |
with gr.Blocks() as demo:
|
169 |
with gr.Tab("Explore Dependency Graphs"):
|
170 |
-
|
171 |
with gr.Tab("Explore Repository Embeddings"):
|
172 |
-
|
173 |
-
tab_elems = [
|
174 |
-
gr.Markdown("## Tasks by area"),
|
175 |
-
gr.Markdown(descriptions["intro"]),
|
176 |
-
gr.Plot(embedding_visualizer.make_task_area_scatterplot()),
|
177 |
-
]
|
178 |
-
|
179 |
-
embedding_plots = embedding_visualizer.make_embedding_plots(
|
180 |
-
color_col="representation"
|
181 |
-
)
|
182 |
-
for plot_name in [
|
183 |
-
"Basic representations",
|
184 |
-
"Dependency graph based representations",
|
185 |
-
"READMEs",
|
186 |
-
]:
|
187 |
-
tab_elems.append(gr.Markdown(f"## {plot_name}"))
|
188 |
-
if descriptions.get(plot_name):
|
189 |
-
tab_elems.append(gr.Markdown(descriptions[plot_name]))
|
190 |
-
tab_elems.append(gr.Plot(embedding_plots[plot_name]))
|
191 |
-
gr.Column(tab_elems)
|
192 |
with gr.Tab("Explore Repository Representations"):
|
193 |
-
setup_repository_representations_tab(repos, representation_types)
|
194 |
with gr.Tab("Explore PapersWithCode Tasks"):
|
|
|
195 |
|
196 |
-
gr.Markdown(descriptions["task_counts_description"])
|
197 |
-
|
198 |
-
with gr.Row():
|
199 |
-
min_task_counts_slider_all = gr.Slider(
|
200 |
-
minimum=50,
|
201 |
-
maximum=1000,
|
202 |
-
value=150,
|
203 |
-
step=50,
|
204 |
-
label="Minimum Task Count (All Repositories)",
|
205 |
-
)
|
206 |
-
update_button = gr.Button("Update Plots")
|
207 |
-
min_task_counts_slider_selected = gr.Slider(
|
208 |
-
minimum=10,
|
209 |
-
maximum=100,
|
210 |
-
value=50,
|
211 |
-
step=10,
|
212 |
-
label="Minimum Task Count (Selected Repositories)",
|
213 |
-
)
|
214 |
-
update_selected_button = gr.Button("Update Plots")
|
215 |
-
|
216 |
-
with gr.Row("Task Counts"):
|
217 |
-
all_repos_tasks_plot = gr.Plot(label="All Repositories")
|
218 |
-
selected_repos_tasks_plot = gr.Plot(label="Selected Repositories")
|
219 |
-
|
220 |
-
update_button.click(
|
221 |
-
fn=partial(task_visualizations.get_tasks_sunburst, which_df="all"),
|
222 |
-
inputs=[min_task_counts_slider_all],
|
223 |
-
outputs=[all_repos_tasks_plot],
|
224 |
-
)
|
225 |
-
|
226 |
-
update_selected_button.click(
|
227 |
-
fn=partial(task_visualizations.get_tasks_sunburst, which_df="selected"),
|
228 |
-
inputs=[min_task_counts_slider_selected],
|
229 |
-
outputs=[selected_repos_tasks_plot],
|
230 |
-
)
|
231 |
-
|
232 |
-
gr.Plot(embedding_visualizer.make_task_area_scatterplot())
|
233 |
|
234 |
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import logging
|
|
|
4 |
from task_visualizations import TaskVisualizations
|
5 |
+
from text_visualization import (
|
6 |
+
EmbeddingVisualizer,
|
7 |
+
)
|
8 |
+
from gradio_tabs import (
|
9 |
+
setup_embeddings_tab,
|
10 |
+
setup_tasks_tab,
|
11 |
+
setup_graph_tab,
|
12 |
+
setup_repository_representations_tab,
|
13 |
+
)
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
|
|
|
32 |
)
|
33 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
## main
|
36 |
repos_df = load_repo_df(AppConfig.repo_representations_path)
|
37 |
repos = list(repos_df["repo_name"].unique())
|
|
|
48 |
embedding_visualizer = EmbeddingVisualizer(display_df=display_df)
|
49 |
|
50 |
|
51 |
+
def load_embeddings_intro_description():
|
52 |
+
return """
|
53 |
+
The following plots show embeddings obtained with MPNet sentence transformer after applying 2d UMAP algorithm for dimensionality reduction.
|
54 |
+
|
55 |
+
In the first scatterplot we display PapersWithCode tasks that are colored by area.
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
descriptions = {
|
60 |
"intro": load_embeddings_intro_description(),
|
61 |
"Basic representations": """Now we show the embeddings of tasks and repos, using various texts or representations.
|
|
|
78 |
|
79 |
with gr.Blocks() as demo:
|
80 |
with gr.Tab("Explore Dependency Graphs"):
|
81 |
+
setup_graph_tab()
|
82 |
with gr.Tab("Explore Repository Embeddings"):
|
83 |
+
setup_embeddings_tab(descriptions, embedding_visualizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with gr.Tab("Explore Repository Representations"):
|
85 |
+
setup_repository_representations_tab(repos_df, repos, representation_types)
|
86 |
with gr.Tab("Explore PapersWithCode Tasks"):
|
87 |
+
setup_tasks_tab(descriptions, task_visualizations)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
demo.launch(share=True)
|
gradio_tabs.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from graph_visualizations import *
|
2 |
+
from text_visualization import WordCloudExtractor
|
3 |
+
import logging
|
4 |
+
from functools import partial
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
def display_representations(repos_df, repo, representation1, representation2):
|
9 |
+
repo_data = repos_df[repos_df["repo_name"] == repo]
|
10 |
+
logging.info(f"repo_data: {repo_data}")
|
11 |
+
text1 = (
|
12 |
+
repo_data[repo_data["representation"] == representation1]["text"].iloc[0]
|
13 |
+
if not repo_data[repo_data["representation"] == representation1].empty
|
14 |
+
else "No data available"
|
15 |
+
)
|
16 |
+
text2 = (
|
17 |
+
repo_data[repo_data["representation"] == representation2]["text"].iloc[0]
|
18 |
+
if not repo_data[repo_data["representation"] == representation2].empty
|
19 |
+
else "No data available"
|
20 |
+
)
|
21 |
+
|
22 |
+
return text1, text2
|
23 |
+
|
24 |
+
|
25 |
+
def get_representation_wordclouds(representations, repos_df):
|
26 |
+
wordclouds = dict()
|
27 |
+
for representation in representations:
|
28 |
+
texts = list(repos_df[repos_df["representation"] == representation]["text"])
|
29 |
+
wordclouds[representation] = WordCloudExtractor().extract_wordcloud_image(texts)
|
30 |
+
return wordclouds
|
31 |
+
|
32 |
+
|
33 |
+
def load_embeddings_description():
|
34 |
+
return
|
35 |
+
|
36 |
+
|
37 |
+
def setup_repository_representations_tab(repos_df, repos, representation_types):
|
38 |
+
|
39 |
+
wordcloud_dict = get_representation_wordclouds(representation_types, repos_df)
|
40 |
+
gr.Markdown("## Wordclouds")
|
41 |
+
gr.Gallery(
|
42 |
+
[
|
43 |
+
(wordcloud, representation_type)
|
44 |
+
for representation_type, wordcloud in wordcloud_dict.items()
|
45 |
+
],
|
46 |
+
columns=[3],
|
47 |
+
rows=[4],
|
48 |
+
height=300,
|
49 |
+
)
|
50 |
+
|
51 |
+
gr.Markdown("Select a repository and two representation types to compare them.")
|
52 |
+
with gr.Row():
|
53 |
+
repo = gr.Dropdown(choices=repos, label="Repository", value=repos[0])
|
54 |
+
representation1 = gr.Dropdown(
|
55 |
+
choices=representation_types, label="Representation 1", value="readme"
|
56 |
+
)
|
57 |
+
representation2 = gr.Dropdown(
|
58 |
+
choices=representation_types,
|
59 |
+
label="Representation 2",
|
60 |
+
value="generated_readme",
|
61 |
+
)
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column(
|
65 |
+
elem_id="column1",
|
66 |
+
variant="panel",
|
67 |
+
scale=1,
|
68 |
+
min_width=300,
|
69 |
+
):
|
70 |
+
text1 = gr.Markdown()
|
71 |
+
with gr.Column(
|
72 |
+
elem_id="column2",
|
73 |
+
variant="panel",
|
74 |
+
scale=1,
|
75 |
+
min_width=300,
|
76 |
+
):
|
77 |
+
text2 = gr.Markdown()
|
78 |
+
|
79 |
+
def update_representations(repo, representation1, representation2):
|
80 |
+
text1_content, text2_content = display_representations(
|
81 |
+
repos_df, repo, representation1, representation2
|
82 |
+
)
|
83 |
+
return (
|
84 |
+
f"### Representation 1: {representation1}\n\n{text1_content}",
|
85 |
+
f"### Representation 2: {representation2}\n\n{text2_content}",
|
86 |
+
)
|
87 |
+
|
88 |
+
# Initial call to populate textboxes with default values
|
89 |
+
text1.value, text2.value = update_representations(
|
90 |
+
repos[0], "readme", "generated_readme"
|
91 |
+
)
|
92 |
+
|
93 |
+
for component in [repo, representation1, representation2]:
|
94 |
+
component.change(
|
95 |
+
fn=update_representations,
|
96 |
+
inputs=[repo, representation1, representation2],
|
97 |
+
outputs=[text1, text2],
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
def setup_tasks_tab(descriptions, task_visualizations):
|
102 |
+
|
103 |
+
gr.Markdown(descriptions["task_counts_description"])
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
min_task_counts_slider_all = gr.Slider(
|
107 |
+
minimum=50,
|
108 |
+
maximum=1000,
|
109 |
+
value=150,
|
110 |
+
step=50,
|
111 |
+
label="Minimum Task Count (All Repositories)",
|
112 |
+
)
|
113 |
+
update_button = gr.Button("Update Plots")
|
114 |
+
min_task_counts_slider_selected = gr.Slider(
|
115 |
+
minimum=10,
|
116 |
+
maximum=100,
|
117 |
+
value=50,
|
118 |
+
step=10,
|
119 |
+
label="Minimum Task Count (Selected Repositories)",
|
120 |
+
)
|
121 |
+
update_selected_button = gr.Button("Update Plots")
|
122 |
+
|
123 |
+
with gr.Row("Task Counts"):
|
124 |
+
all_repos_tasks_plot = gr.Plot(label="All Repositories")
|
125 |
+
selected_repos_tasks_plot = gr.Plot(label="Selected Repositories")
|
126 |
+
|
127 |
+
update_button.click(
|
128 |
+
fn=partial(task_visualizations.get_tasks_sunburst, which_df="all"),
|
129 |
+
inputs=[min_task_counts_slider_all],
|
130 |
+
outputs=[all_repos_tasks_plot],
|
131 |
+
)
|
132 |
+
|
133 |
+
update_selected_button.click(
|
134 |
+
fn=partial(task_visualizations.get_tasks_sunburst, which_df="selected"),
|
135 |
+
inputs=[min_task_counts_slider_selected],
|
136 |
+
outputs=[selected_repos_tasks_plot],
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def setup_embeddings_tab(descriptions, embedding_visualizer):
|
141 |
+
tab_elems = [
|
142 |
+
gr.Markdown("## Tasks by area"),
|
143 |
+
gr.Markdown(descriptions["intro"]),
|
144 |
+
gr.Plot(embedding_visualizer.make_task_area_scatterplot()),
|
145 |
+
]
|
146 |
+
|
147 |
+
embedding_plots = embedding_visualizer.make_embedding_plots(
|
148 |
+
color_col="representation"
|
149 |
+
)
|
150 |
+
for plot_name in [
|
151 |
+
"Basic representations",
|
152 |
+
"Dependency graph based representations",
|
153 |
+
"READMEs",
|
154 |
+
]:
|
155 |
+
tab_elems.append(gr.Markdown(f"## {plot_name}"))
|
156 |
+
if descriptions.get(plot_name):
|
157 |
+
tab_elems.append(gr.Markdown(descriptions[plot_name]))
|
158 |
+
tab_elems.append(gr.Plot(embedding_plots[plot_name]))
|
159 |
+
gr.Column(tab_elems)
|
160 |
+
|
161 |
+
|
162 |
+
def setup_graph_tab():
|
163 |
+
gr.Markdown("# Dependency Graph Visualization")
|
164 |
+
gr.Markdown("Select a repository to visualize its dependency graph.")
|
165 |
+
graphs_dict = init_graphs()
|
166 |
+
repo_names = list(graphs_dict.keys())
|
167 |
+
|
168 |
+
def plot_selected_repo(repo_name, layout_type, *edge_type_checkboxes):
|
169 |
+
# Convert checkbox values to selected edge types
|
170 |
+
edge_types = (
|
171 |
+
get_available_edge_types(graphs_dict[repo_name])
|
172 |
+
if repo_name in graphs_dict
|
173 |
+
else []
|
174 |
+
)
|
175 |
+
selected_edge_types = set()
|
176 |
+
for i, is_selected in enumerate(edge_type_checkboxes):
|
177 |
+
if is_selected and i < len(edge_types):
|
178 |
+
selected_edge_types.add(edge_types[i])
|
179 |
+
|
180 |
+
fig, stats = visualize_graph(
|
181 |
+
repo_name, graphs_dict, layout_type, selected_edge_types
|
182 |
+
)
|
183 |
+
return fig, stats
|
184 |
+
|
185 |
+
def update_edge_checkboxes(repo_name):
|
186 |
+
"""Update edge type checkboxes when repository changes"""
|
187 |
+
if repo_name not in graphs_dict:
|
188 |
+
return [gr.Checkbox(visible=False)] * 8
|
189 |
+
|
190 |
+
edge_types = get_available_edge_types(graphs_dict[repo_name])
|
191 |
+
checkboxes = []
|
192 |
+
|
193 |
+
# Create checkboxes for each edge type (up to 8)
|
194 |
+
for i in range(8):
|
195 |
+
if i < len(edge_types):
|
196 |
+
edge_type = edge_types[i]
|
197 |
+
# function-function should be unchecked by default
|
198 |
+
default_value = edge_type != "function-function"
|
199 |
+
checkboxes.append(
|
200 |
+
gr.Checkbox(label=edge_type, value=default_value, visible=True)
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
checkboxes.append(gr.Checkbox(visible=False))
|
204 |
+
|
205 |
+
return checkboxes
|
206 |
+
|
207 |
+
# Get initial edge types for the first repository
|
208 |
+
initial_edge_types = []
|
209 |
+
if repo_names:
|
210 |
+
initial_edge_types = get_available_edge_types(graphs_dict[repo_names[0]])
|
211 |
+
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column(scale=1):
|
214 |
+
repo_dropdown = gr.Dropdown(
|
215 |
+
choices=repo_names,
|
216 |
+
label="Select Repository",
|
217 |
+
value=repo_names[0] if repo_names else None,
|
218 |
+
)
|
219 |
+
|
220 |
+
layout_dropdown = gr.Dropdown(
|
221 |
+
choices=[
|
222 |
+
("Spring Layout (Force-directed)", "spring"),
|
223 |
+
("Circular Layout", "circular"),
|
224 |
+
("Kamada-Kawai Layout", "kamada_kawai"),
|
225 |
+
("Fruchterman-Reingold Layout", "fruchterman_reingold"),
|
226 |
+
("Shell Layout", "shell"),
|
227 |
+
("Spectral Layout", "spectral"),
|
228 |
+
("Planar Layout", "planar"),
|
229 |
+
],
|
230 |
+
label="Select Layout",
|
231 |
+
value="spring",
|
232 |
+
)
|
233 |
+
|
234 |
+
gr.Markdown("### Edge Type Filters")
|
235 |
+
gr.Markdown("Select which edge types to display:")
|
236 |
+
|
237 |
+
# Create checkboxes for edge types with initial values
|
238 |
+
edge_checkboxes = []
|
239 |
+
for i in range(8): # Support up to 8 edge types
|
240 |
+
if i < len(initial_edge_types):
|
241 |
+
checkbox = gr.Checkbox(
|
242 |
+
label=initial_edge_types[i], value=True, visible=True
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
checkbox = gr.Checkbox(label=f"Edge Type {i+1}", visible=False)
|
246 |
+
edge_checkboxes.append(checkbox)
|
247 |
+
|
248 |
+
visualize_btn = gr.Button("Visualize Graph", variant="primary")
|
249 |
+
|
250 |
+
stats_text = gr.Textbox(
|
251 |
+
label="Graph Statistics", lines=6, interactive=False
|
252 |
+
)
|
253 |
+
|
254 |
+
with gr.Column(scale=2):
|
255 |
+
graph_plot = gr.Plot(label="Interactive Dependency Graph")
|
256 |
+
|
257 |
+
# Set up event handlers
|
258 |
+
all_inputs = [repo_dropdown, layout_dropdown] + edge_checkboxes
|
259 |
+
|
260 |
+
visualize_btn.click(
|
261 |
+
fn=plot_selected_repo,
|
262 |
+
inputs=all_inputs,
|
263 |
+
outputs=[graph_plot, stats_text],
|
264 |
+
)
|
265 |
+
|
266 |
+
# Update checkboxes when repository changes
|
267 |
+
repo_dropdown.change(
|
268 |
+
fn=update_edge_checkboxes,
|
269 |
+
inputs=[repo_dropdown],
|
270 |
+
outputs=edge_checkboxes,
|
271 |
+
)
|
272 |
+
|
273 |
+
# Auto-visualize on dropdown change
|
274 |
+
repo_dropdown.change(
|
275 |
+
fn=plot_selected_repo,
|
276 |
+
inputs=all_inputs,
|
277 |
+
outputs=[graph_plot, stats_text],
|
278 |
+
)
|
279 |
+
|
280 |
+
# Auto-visualize on layout change
|
281 |
+
layout_dropdown.change(
|
282 |
+
fn=plot_selected_repo,
|
283 |
+
inputs=all_inputs,
|
284 |
+
outputs=[graph_plot, stats_text],
|
285 |
+
)
|
286 |
+
|
287 |
+
# Auto-visualize on checkbox changes
|
288 |
+
for checkbox in edge_checkboxes:
|
289 |
+
checkbox.change(
|
290 |
+
fn=plot_selected_repo,
|
291 |
+
inputs=all_inputs,
|
292 |
+
outputs=[graph_plot, stats_text],
|
293 |
+
)
|
graph_visualizations.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import networkx as nx
|
4 |
import tqdm
|
5 |
import plotly.graph_objects as go
|
6 |
-
import plotly.express as px
|
7 |
from datasets import load_dataset
|
8 |
import pandas as pd
|
9 |
|
@@ -386,137 +384,3 @@ Visible edge types:
|
|
386 |
"""
|
387 |
|
388 |
return fig, stats
|
389 |
-
|
390 |
-
|
391 |
-
def graph_tab():
|
392 |
-
gr.Markdown("# Dependency Graph Visualization")
|
393 |
-
gr.Markdown("Select a repository to visualize its dependency graph.")
|
394 |
-
graphs_dict = init_graphs()
|
395 |
-
repo_names = list(graphs_dict.keys())
|
396 |
-
|
397 |
-
def plot_selected_repo(repo_name, layout_type, *edge_type_checkboxes):
|
398 |
-
# Convert checkbox values to selected edge types
|
399 |
-
edge_types = (
|
400 |
-
get_available_edge_types(graphs_dict[repo_name])
|
401 |
-
if repo_name in graphs_dict
|
402 |
-
else []
|
403 |
-
)
|
404 |
-
selected_edge_types = set()
|
405 |
-
for i, is_selected in enumerate(edge_type_checkboxes):
|
406 |
-
if is_selected and i < len(edge_types):
|
407 |
-
selected_edge_types.add(edge_types[i])
|
408 |
-
|
409 |
-
fig, stats = visualize_graph(
|
410 |
-
repo_name, graphs_dict, layout_type, selected_edge_types
|
411 |
-
)
|
412 |
-
return fig, stats
|
413 |
-
|
414 |
-
def update_edge_checkboxes(repo_name):
|
415 |
-
"""Update edge type checkboxes when repository changes"""
|
416 |
-
if repo_name not in graphs_dict:
|
417 |
-
return [gr.Checkbox(visible=False)] * 8
|
418 |
-
|
419 |
-
edge_types = get_available_edge_types(graphs_dict[repo_name])
|
420 |
-
checkboxes = []
|
421 |
-
|
422 |
-
# Create checkboxes for each edge type (up to 8)
|
423 |
-
for i in range(8):
|
424 |
-
if i < len(edge_types):
|
425 |
-
edge_type = edge_types[i]
|
426 |
-
# function-function should be unchecked by default
|
427 |
-
default_value = edge_type != "function-function"
|
428 |
-
checkboxes.append(
|
429 |
-
gr.Checkbox(label=edge_type, value=default_value, visible=True)
|
430 |
-
)
|
431 |
-
else:
|
432 |
-
checkboxes.append(gr.Checkbox(visible=False))
|
433 |
-
|
434 |
-
return checkboxes
|
435 |
-
|
436 |
-
# Get initial edge types for the first repository
|
437 |
-
initial_edge_types = []
|
438 |
-
if repo_names:
|
439 |
-
initial_edge_types = get_available_edge_types(graphs_dict[repo_names[0]])
|
440 |
-
|
441 |
-
with gr.Row():
|
442 |
-
with gr.Column(scale=1):
|
443 |
-
repo_dropdown = gr.Dropdown(
|
444 |
-
choices=repo_names,
|
445 |
-
label="Select Repository",
|
446 |
-
value=repo_names[0] if repo_names else None,
|
447 |
-
)
|
448 |
-
|
449 |
-
layout_dropdown = gr.Dropdown(
|
450 |
-
choices=[
|
451 |
-
("Spring Layout (Force-directed)", "spring"),
|
452 |
-
("Circular Layout", "circular"),
|
453 |
-
("Kamada-Kawai Layout", "kamada_kawai"),
|
454 |
-
("Fruchterman-Reingold Layout", "fruchterman_reingold"),
|
455 |
-
("Shell Layout", "shell"),
|
456 |
-
("Spectral Layout", "spectral"),
|
457 |
-
("Planar Layout", "planar"),
|
458 |
-
],
|
459 |
-
label="Select Layout",
|
460 |
-
value="spring",
|
461 |
-
)
|
462 |
-
|
463 |
-
gr.Markdown("### Edge Type Filters")
|
464 |
-
gr.Markdown("Select which edge types to display:")
|
465 |
-
|
466 |
-
# Create checkboxes for edge types with initial values
|
467 |
-
edge_checkboxes = []
|
468 |
-
for i in range(8): # Support up to 8 edge types
|
469 |
-
if i < len(initial_edge_types):
|
470 |
-
checkbox = gr.Checkbox(
|
471 |
-
label=initial_edge_types[i], value=True, visible=True
|
472 |
-
)
|
473 |
-
else:
|
474 |
-
checkbox = gr.Checkbox(label=f"Edge Type {i+1}", visible=False)
|
475 |
-
edge_checkboxes.append(checkbox)
|
476 |
-
|
477 |
-
visualize_btn = gr.Button("Visualize Graph", variant="primary")
|
478 |
-
|
479 |
-
stats_text = gr.Textbox(
|
480 |
-
label="Graph Statistics", lines=6, interactive=False
|
481 |
-
)
|
482 |
-
|
483 |
-
with gr.Column(scale=2):
|
484 |
-
graph_plot = gr.Plot(label="Interactive Dependency Graph")
|
485 |
-
|
486 |
-
# Set up event handlers
|
487 |
-
all_inputs = [repo_dropdown, layout_dropdown] + edge_checkboxes
|
488 |
-
|
489 |
-
visualize_btn.click(
|
490 |
-
fn=plot_selected_repo,
|
491 |
-
inputs=all_inputs,
|
492 |
-
outputs=[graph_plot, stats_text],
|
493 |
-
)
|
494 |
-
|
495 |
-
# Update checkboxes when repository changes
|
496 |
-
repo_dropdown.change(
|
497 |
-
fn=update_edge_checkboxes,
|
498 |
-
inputs=[repo_dropdown],
|
499 |
-
outputs=edge_checkboxes,
|
500 |
-
)
|
501 |
-
|
502 |
-
# Auto-visualize on dropdown change
|
503 |
-
repo_dropdown.change(
|
504 |
-
fn=plot_selected_repo,
|
505 |
-
inputs=all_inputs,
|
506 |
-
outputs=[graph_plot, stats_text],
|
507 |
-
)
|
508 |
-
|
509 |
-
# Auto-visualize on layout change
|
510 |
-
layout_dropdown.change(
|
511 |
-
fn=plot_selected_repo,
|
512 |
-
inputs=all_inputs,
|
513 |
-
outputs=[graph_plot, stats_text],
|
514 |
-
)
|
515 |
-
|
516 |
-
# Auto-visualize on checkbox changes
|
517 |
-
for checkbox in edge_checkboxes:
|
518 |
-
checkbox.change(
|
519 |
-
fn=plot_selected_repo,
|
520 |
-
inputs=all_inputs,
|
521 |
-
outputs=[graph_plot, stats_text],
|
522 |
-
)
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import networkx as nx
|
3 |
import tqdm
|
4 |
import plotly.graph_objects as go
|
|
|
5 |
from datasets import load_dataset
|
6 |
import pandas as pd
|
7 |
|
|
|
384 |
"""
|
385 |
|
386 |
return fig, stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
task_visualizations.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
import pandas as pd
|
2 |
-
import ast
|
3 |
-
import json
|
4 |
import plotly.express as px
|
5 |
-
import plotly.graph_objects as go
|
6 |
|
7 |
|
8 |
class TaskVisualizations:
|
@@ -32,9 +29,11 @@ class TaskVisualizations:
|
|
32 |
)
|
33 |
print(topk_dict)
|
34 |
sorted_df[by_col] = sorted_df[by_col].apply(
|
35 |
-
lambda k:
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
)
|
39 |
sorted_df = sorted_df.groupby(by_col).agg({val_col: sum})
|
40 |
return sorted_df
|
|
|
1 |
import pandas as pd
|
|
|
|
|
2 |
import plotly.express as px
|
|
|
3 |
|
4 |
|
5 |
class TaskVisualizations:
|
|
|
29 |
)
|
30 |
print(topk_dict)
|
31 |
sorted_df[by_col] = sorted_df[by_col].apply(
|
32 |
+
lambda k: (
|
33 |
+
k
|
34 |
+
if k in topk_dict.keys() and topk_dict[k] >= val_threshold
|
35 |
+
else "other"
|
36 |
+
)
|
37 |
)
|
38 |
sorted_df = sorted_df.groupby(by_col).agg({val_col: sum})
|
39 |
return sorted_df
|
text_visualization.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Dict, Any
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
import wordcloud
|
4 |
from pydantic import BaseModel, Field
|
@@ -6,21 +6,28 @@ import numpy as np
|
|
6 |
import PIL
|
7 |
import plotly.express as px
|
8 |
import pandas as pd
|
9 |
-
import plotly.graph_objects as go
|
10 |
|
11 |
|
12 |
class WordCloudExtractor(BaseModel):
|
13 |
max_words: int = 50
|
14 |
wordcloud_params: Dict[str, Any] = Field(default_factory=dict)
|
15 |
-
tfidf_params: Dict[str, Any] = Field(
|
|
|
|
|
16 |
|
17 |
def extract_wordcloud_image(self, texts) -> PIL.Image.Image:
|
18 |
-
frequencies = self._extract_frequencies(
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
return wc.to_image()
|
21 |
|
22 |
@classmethod
|
23 |
-
def _extract_frequencies(
|
|
|
|
|
24 |
"""
|
25 |
Extract word frequencies from a corpus using TF-IDF vectorization
|
26 |
and generate word cloud frequencies.
|
@@ -33,10 +40,7 @@ class WordCloudExtractor(BaseModel):
|
|
33 |
Dictionary of word frequencies suitable for WordCloud
|
34 |
"""
|
35 |
# Initialize TF-IDF vectorizer
|
36 |
-
tfidf = TfidfVectorizer(
|
37 |
-
max_features=max_words,
|
38 |
-
**tfidf_params
|
39 |
-
)
|
40 |
|
41 |
# Fit and transform the texts
|
42 |
tfidf_matrix = tfidf.fit_transform(texts)
|
@@ -55,17 +59,21 @@ class WordCloudExtractor(BaseModel):
|
|
55 |
|
56 |
class EmbeddingVisualizer(BaseModel):
|
57 |
display_df: pd.DataFrame
|
58 |
-
plot_kwargs: Dict[str, Any] = Field(
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
plots Plotly scatterplot of UMAP embeddings
|
71 |
"""
|
@@ -74,20 +82,44 @@ class EmbeddingVisualizer(BaseModel):
|
|
74 |
display_df = filter_df_fn(display_df)
|
75 |
|
76 |
display_df = display_df.sort_values("representation", ascending=False)
|
77 |
-
readme_df = display_df[
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
plots = [
|
82 |
self._make_task_and_repos_scatterplot(df, hover_data, color_col)
|
83 |
for df in [readme_df, raw_df, dependency_df]
|
84 |
]
|
85 |
-
return dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def _make_task_and_repos_scatterplot(self, df, hover_data, color_col):
|
88 |
# Set opacity and symbol based on is_task
|
89 |
-
df[
|
90 |
-
df[
|
91 |
|
92 |
combined_fig = px.scatter(
|
93 |
df,
|
@@ -96,7 +128,7 @@ class EmbeddingVisualizer(BaseModel):
|
|
96 |
color=color_col,
|
97 |
color_discrete_sequence=px.colors.qualitative.Set1,
|
98 |
opacity=0.5,
|
99 |
-
**self.plot_kwargs
|
100 |
)
|
101 |
combined_fig.data = combined_fig.data[::-1]
|
102 |
|
@@ -104,10 +136,26 @@ class EmbeddingVisualizer(BaseModel):
|
|
104 |
|
105 |
def make_task_area_scatterplot(self, n_areas=6):
|
106 |
display_df = self.display_df
|
107 |
-
displayed_tasks_df = display_df[
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
print("N DISPLAYED TASKS", len(displayed_tasks_df))
|
112 |
return tasks_fig
|
113 |
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
import wordcloud
|
4 |
from pydantic import BaseModel, Field
|
|
|
6 |
import PIL
|
7 |
import plotly.express as px
|
8 |
import pandas as pd
|
|
|
9 |
|
10 |
|
11 |
class WordCloudExtractor(BaseModel):
|
12 |
max_words: int = 50
|
13 |
wordcloud_params: Dict[str, Any] = Field(default_factory=dict)
|
14 |
+
tfidf_params: Dict[str, Any] = Field(
|
15 |
+
default_factory=lambda: {"stop_words": "english"}
|
16 |
+
)
|
17 |
|
18 |
def extract_wordcloud_image(self, texts) -> PIL.Image.Image:
|
19 |
+
frequencies = self._extract_frequencies(
|
20 |
+
texts, self.max_words, tfidf_params=self.tfidf_params
|
21 |
+
)
|
22 |
+
wc = wordcloud.WordCloud(**self.wordcloud_params).generate_from_frequencies(
|
23 |
+
frequencies
|
24 |
+
)
|
25 |
return wc.to_image()
|
26 |
|
27 |
@classmethod
|
28 |
+
def _extract_frequencies(
|
29 |
+
cls, texts, max_words=100, tfidf_params: dict = {}
|
30 |
+
) -> Dict[str, float]:
|
31 |
"""
|
32 |
Extract word frequencies from a corpus using TF-IDF vectorization
|
33 |
and generate word cloud frequencies.
|
|
|
40 |
Dictionary of word frequencies suitable for WordCloud
|
41 |
"""
|
42 |
# Initialize TF-IDF vectorizer
|
43 |
+
tfidf = TfidfVectorizer(max_features=max_words, **tfidf_params)
|
|
|
|
|
|
|
44 |
|
45 |
# Fit and transform the texts
|
46 |
tfidf_matrix = tfidf.fit_transform(texts)
|
|
|
59 |
|
60 |
class EmbeddingVisualizer(BaseModel):
|
61 |
display_df: pd.DataFrame
|
62 |
+
plot_kwargs: Dict[str, Any] = Field(
|
63 |
+
default_factory=lambda: dict(
|
64 |
+
range_x=(3, 16.5),
|
65 |
+
range_y=(-3, 11),
|
66 |
+
width=1200,
|
67 |
+
height=800,
|
68 |
+
x="x",
|
69 |
+
y="y",
|
70 |
+
template="plotly_white",
|
71 |
+
)
|
72 |
+
)
|
73 |
+
|
74 |
+
def make_embedding_plots(
|
75 |
+
self, color_col=None, hover_data=["name"], filter_df_fn=None
|
76 |
+
):
|
77 |
"""
|
78 |
plots Plotly scatterplot of UMAP embeddings
|
79 |
"""
|
|
|
82 |
display_df = filter_df_fn(display_df)
|
83 |
|
84 |
display_df = display_df.sort_values("representation", ascending=False)
|
85 |
+
readme_df = display_df[
|
86 |
+
display_df["representation"].isin(["readme", "generated_readme", "task"])
|
87 |
+
]
|
88 |
+
raw_df = display_df[
|
89 |
+
display_df["representation"].isin(
|
90 |
+
["dependency_signature", "selected_code", "task"]
|
91 |
+
)
|
92 |
+
]
|
93 |
+
dependency_df = display_df[
|
94 |
+
display_df["representation"].isin(
|
95 |
+
[
|
96 |
+
"repository_signature",
|
97 |
+
"dependency_signature",
|
98 |
+
"generated_tasks",
|
99 |
+
"task",
|
100 |
+
]
|
101 |
+
)
|
102 |
+
]
|
103 |
|
104 |
plots = [
|
105 |
self._make_task_and_repos_scatterplot(df, hover_data, color_col)
|
106 |
for df in [readme_df, raw_df, dependency_df]
|
107 |
]
|
108 |
+
return dict(
|
109 |
+
zip(
|
110 |
+
[
|
111 |
+
"READMEs",
|
112 |
+
"Basic representations",
|
113 |
+
"Dependency graph based representations",
|
114 |
+
],
|
115 |
+
plots,
|
116 |
+
)
|
117 |
+
)
|
118 |
|
119 |
def _make_task_and_repos_scatterplot(self, df, hover_data, color_col):
|
120 |
# Set opacity and symbol based on is_task
|
121 |
+
df["size"] = df["is_task"].apply(lambda x: 0.25 if x else 0.1)
|
122 |
+
df["symbol"] = df["is_task"].apply(int)
|
123 |
|
124 |
combined_fig = px.scatter(
|
125 |
df,
|
|
|
128 |
color=color_col,
|
129 |
color_discrete_sequence=px.colors.qualitative.Set1,
|
130 |
opacity=0.5,
|
131 |
+
**self.plot_kwargs,
|
132 |
)
|
133 |
combined_fig.data = combined_fig.data[::-1]
|
134 |
|
|
|
136 |
|
137 |
def make_task_area_scatterplot(self, n_areas=6):
|
138 |
display_df = self.display_df
|
139 |
+
displayed_tasks_df = display_df[
|
140 |
+
display_df["representation"] == "task"
|
141 |
+
].sort_values("representation")
|
142 |
+
displayed_tasks_df = displayed_tasks_df.merge(
|
143 |
+
pd.read_csv("data/paperswithcode_tasks.csv"),
|
144 |
+
left_on="name",
|
145 |
+
right_on="task",
|
146 |
+
)
|
147 |
+
displayed_tasks_df = displayed_tasks_df[
|
148 |
+
displayed_tasks_df["area"].isin(
|
149 |
+
displayed_tasks_df["area"].value_counts().head(n_areas).index
|
150 |
+
)
|
151 |
+
]
|
152 |
+
tasks_fig = px.scatter(
|
153 |
+
displayed_tasks_df,
|
154 |
+
color="area",
|
155 |
+
hover_data=["name"],
|
156 |
+
opacity=0.7,
|
157 |
+
**self.plot_kwargs,
|
158 |
+
)
|
159 |
print("N DISPLAYED TASKS", len(displayed_tasks_df))
|
160 |
return tasks_fig
|
161 |
|