# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import os import warnings import math import torch import torch.nn as nn import torchvision import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from distutils.version import LooseVersion from torch.nn.modules.utils import _pair, _single import numpy as np from functools import reduce, lru_cache from operator import mul from einops import rearrange from einops.layers.torch import Rearrange class ModulatedDeformConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=True): super(ModulatedDeformConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.deformable_groups = deformable_groups self.with_bias = bias # enable compatibility with nn.Conv2d self.transposed = False self.output_padding = _single(0) self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.init_weights() def init_weights(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1. / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.zero_() # def forward(self, x, offset, mask): # return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, # self.groups, self.deformable_groups) class ModulatedDeformConvPack(ModulatedDeformConv): """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers. Args: in_channels (int): Same as nn.Conv2d. out_channels (int): Same as nn.Conv2d. kernel_size (int or tuple[int]): Same as nn.Conv2d. stride (int or tuple[int]): Same as nn.Conv2d. padding (int or tuple[int]): Same as nn.Conv2d. dilation (int or tuple[int]): Same as nn.Conv2d. groups (int): Same as nn.Conv2d. bias (bool or str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if norm_cfg is None, otherwise False. """ _version = 2 def __init__(self, *args, **kwargs): super(ModulatedDeformConvPack, self).__init__(*args, **kwargs) self.conv_offset = nn.Conv2d( self.in_channels, self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1], kernel_size=self.kernel_size, stride=_pair(self.stride), padding=_pair(self.padding), dilation=_pair(self.dilation), bias=True) self.init_weights() def init_weights(self): super(ModulatedDeformConvPack, self).init_weights() if hasattr(self, 'conv_offset'): self.conv_offset.weight.data.zero_() self.conv_offset.bias.data.zero_() # def forward(self, x): # out = self.conv_offset(x) # o1, o2, mask = torch.chunk(out, 3, dim=1) # offset = torch.cat((o1, o2), dim=1) # mask = torch.sigmoid(mask) # return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, # self.groups, self.deformable_groups) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' 'The distribution of values may be incorrect.', stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values low = norm_cdf((a - mean) / std) up = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [low, up], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * low - 1, 2 * up - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): r"""Fills the input Tensor with values drawn from a truncated normal distribution. From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True, use_pad_mask=False): """Warp an image or feature map with optical flow. Args: x (Tensor): Tensor with size (n, c, h, w). flow (Tensor): Tensor with size (n, h, w, 2), normal value. interp_mode (str): 'nearest' or 'bilinear' or 'nearest4'. Default: 'bilinear'. padding_mode (str): 'zeros' or 'border' or 'reflection'. Default: 'zeros'. align_corners (bool): Before pytorch 1.3, the default value is align_corners=True. After pytorch 1.3, the default value is align_corners=False. Here, we use the True as default. use_pad_mask (bool): only used for PWCNet, x is first padded with ones along the channel dimension. The mask is generated according to the grid_sample results of the padded dimension. Returns: Tensor: Warped image or feature map. """ # assert x.size()[-2:] == flow.size()[1:3] # temporaily turned off for image-wise shift n, _, h, w = x.size() # create mesh grid # grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x)) # an illegal memory access on TITAN RTX + PyTorch1.9.1 grid_y, grid_x = torch.meshgrid(torch.arange(0, h, dtype=x.dtype, device=x.device), torch.arange(0, w, dtype=x.dtype, device=x.device)) grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2 grid.requires_grad = False vgrid = grid + flow # if use_pad_mask: # for PWCNet # x = F.pad(x, (0,0,0,0,0,1), mode='constant', value=1) # scale grid to [-1,1] if interp_mode == 'nearest4': # todo: bug, no gradient for flow model in this case!!! but the result is good vgrid_x_floor = 2.0 * torch.floor(vgrid[:, :, :, 0]) / max(w - 1, 1) - 1.0 vgrid_x_ceil = 2.0 * torch.ceil(vgrid[:, :, :, 0]) / max(w - 1, 1) - 1.0 vgrid_y_floor = 2.0 * torch.floor(vgrid[:, :, :, 1]) / max(h - 1, 1) - 1.0 vgrid_y_ceil = 2.0 * torch.ceil(vgrid[:, :, :, 1]) / max(h - 1, 1) - 1.0 output00 = F.grid_sample(x, torch.stack((vgrid_x_floor, vgrid_y_floor), dim=3), mode='nearest', padding_mode=padding_mode, align_corners=align_corners) output01 = F.grid_sample(x, torch.stack((vgrid_x_floor, vgrid_y_ceil), dim=3), mode='nearest', padding_mode=padding_mode, align_corners=align_corners) output10 = F.grid_sample(x, torch.stack((vgrid_x_ceil, vgrid_y_floor), dim=3), mode='nearest', padding_mode=padding_mode, align_corners=align_corners) output11 = F.grid_sample(x, torch.stack((vgrid_x_ceil, vgrid_y_ceil), dim=3), mode='nearest', padding_mode=padding_mode, align_corners=align_corners) return torch.cat([output00, output01, output10, output11], 1) else: vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0 vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0 vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners) # if use_pad_mask: # for PWCNet # output = _flow_warp_masking(output) # TODO, what if align_corners=False return output class DCNv2PackFlowGuided(ModulatedDeformConvPack): """Flow-guided deformable alignment module. Args: in_channels (int): Same as nn.Conv2d. out_channels (int): Same as nn.Conv2d. kernel_size (int or tuple[int]): Same as nn.Conv2d. stride (int or tuple[int]): Same as nn.Conv2d. padding (int or tuple[int]): Same as nn.Conv2d. dilation (int or tuple[int]): Same as nn.Conv2d. groups (int): Same as nn.Conv2d. bias (bool or str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if norm_cfg is None, otherwise False. max_residue_magnitude (int): The maximum magnitude of the offset residue. Default: 10. pa_frames (int): The number of parallel warping frames. Default: 2. Ref: BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment. """ def __init__(self, *args, **kwargs): self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10) self.pa_frames = kwargs.pop('pa_frames', 2) super(DCNv2PackFlowGuided, self).__init__(*args, **kwargs) self.conv_offset = nn.Sequential( nn.Conv2d((1+self.pa_frames//2) * self.in_channels + self.pa_frames, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, 3 * 9 * self.deformable_groups, 3, 1, 1), ) self.init_offset() def init_offset(self): super(ModulatedDeformConvPack, self).init_weights() if hasattr(self, 'conv_offset'): self.conv_offset[-1].weight.data.zero_() self.conv_offset[-1].bias.data.zero_() def forward(self, x, x_flow_warpeds, x_current, flows): out = self.conv_offset(torch.cat(x_flow_warpeds + [x_current] + flows, dim=1)) o1, o2, mask = torch.chunk(out, 3, dim=1) # offset offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) if self.pa_frames == 2: offset = offset + flows[0].flip(1).repeat(1, offset.size(1)//2, 1, 1) elif self.pa_frames == 4: offset1, offset2 = torch.chunk(offset, 2, dim=1) offset1 = offset1 + flows[0].flip(1).repeat(1, offset1.size(1) // 2, 1, 1) offset2 = offset2 + flows[1].flip(1).repeat(1, offset2.size(1) // 2, 1, 1) offset = torch.cat([offset1, offset2], dim=1) elif self.pa_frames == 6: offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) offset1, offset2, offset3 = torch.chunk(offset, 3, dim=1) offset1 = offset1 + flows[0].flip(1).repeat(1, offset1.size(1) // 2, 1, 1) offset2 = offset2 + flows[1].flip(1).repeat(1, offset2.size(1) // 2, 1, 1) offset3 = offset3 + flows[2].flip(1).repeat(1, offset3.size(1) // 2, 1, 1) offset = torch.cat([offset1, offset2, offset3], dim=1) # mask mask = torch.sigmoid(mask) return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, self.dilation, mask) class BasicModule(nn.Module): """Basic Module for SpyNet. """ def __init__(self): super(BasicModule, self).__init__() self.basic_module = nn.Sequential( nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3)) def forward(self, tensor_input): return self.basic_module(tensor_input) class SpyNet(nn.Module): """SpyNet architecture. Args: load_path (str): path for pretrained SpyNet. Default: None. return_levels (list[int]): return flows of different levels. Default: [5]. """ def __init__(self, load_path=None, return_levels=[5]): super(SpyNet, self).__init__() self.return_levels = return_levels self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)]) if load_path: if not os.path.exists(load_path): import requests url = 'https://github.com/JingyunLiang/VRT/releases/download/v0.0/spynet_sintel_final-3d2a1287.pth' r = requests.get(url, allow_redirects=True) print(f'downloading SpyNet pretrained model from {url}') os.makedirs(os.path.dirname(load_path), exist_ok=True) open(load_path, 'wb').write(r.content) self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) def preprocess(self, tensor_input): tensor_output = (tensor_input - self.mean) / self.std return tensor_output def process(self, ref, supp, w, h, w_floor, h_floor): flow_list = [] ref = [self.preprocess(ref)] supp = [self.preprocess(supp)] for level in range(5): ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False)) supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False)) flow = ref[0].new_zeros( [ref[0].size(0), 2, int(math.floor(ref[0].size(2) / 2.0)), int(math.floor(ref[0].size(3) / 2.0))]) for level in range(len(ref)): upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 if upsampled_flow.size(2) != ref[level].size(2): upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate') if upsampled_flow.size(3) != ref[level].size(3): upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate') flow = self.basic_module[level](torch.cat([ ref[level], flow_warp( supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'), upsampled_flow ], 1)) + upsampled_flow if level in self.return_levels: scale = 2**(5-level) # level=5 (scale=1), level=4 (scale=2), level=3 (scale=4), level=2 (scale=8) flow_out = F.interpolate(input=flow, size=(h//scale, w//scale), mode='bilinear', align_corners=False) flow_out[:, 0, :, :] *= float(w//scale) / float(w_floor//scale) flow_out[:, 1, :, :] *= float(h//scale) / float(h_floor//scale) flow_list.insert(0, flow_out) return flow_list def forward(self, ref, supp): assert ref.size() == supp.size() h, w = ref.size(2), ref.size(3) w_floor = math.floor(math.ceil(w / 32.0) * 32.0) h_floor = math.floor(math.ceil(h / 32.0) * 32.0) ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False) supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False) flow_list = self.process(ref, supp, w, h, w_floor, h_floor) return flow_list[0] if len(flow_list) == 1 else flow_list def window_partition(x, window_size): """ Partition the input into windows. Attention will be conducted within the windows. Args: x: (B, D, H, W, C) window_size (tuple[int]): window size Returns: windows: (B*num_windows, window_size*window_size, C) """ B, D, H, W, C = x.shape x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) return windows def window_reverse(windows, window_size, B, D, H, W): """ Reverse windows back to the original input. Attention was conducted within the windows. Args: windows: (B*num_windows, window_size, window_size, C) window_size (tuple[int]): Window size H (int): Height of image W (int): Width of image Returns: x: (B, D, H, W, C) """ x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) return x def get_window_size(x_size, window_size, shift_size=None): """ Get the window size and the shift size """ use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size) @lru_cache() def compute_mask(D, H, W, window_size, shift_size, device): """ Compute attnetion mask for input of size (D, H, W). @lru_cache caches each stage results. """ img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 cnt = 0 for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None): for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None): for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None): img_mask[:, d, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask class Upsample(nn.Sequential): """Upsample module for video SR. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): assert LooseVersion(torch.__version__) >= LooseVersion('1.8.1'), \ 'PyTorch version >= 1.8.1 to support 5D PixelShuffle.' class Transpose_Dim12(nn.Module): """ Transpose Dim1 and Dim2 of a tensor.""" def __init__(self): super().__init__() def forward(self, x): return x.transpose(1, 2) m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv3d(num_feat, 4 * num_feat, kernel_size=(1, 3, 3), padding=(0, 1, 1))) m.append(Transpose_Dim12()) m.append(nn.PixelShuffle(2)) m.append(Transpose_Dim12()) m.append(nn.LeakyReLU(negative_slope=0.1, inplace=True)) m.append(nn.Conv3d(num_feat, num_feat, kernel_size=(1, 3, 3), padding=(0, 1, 1))) elif scale == 3: m.append(nn.Conv3d(num_feat, 9 * num_feat, kernel_size=(1, 3, 3), padding=(0, 1, 1))) m.append(Transpose_Dim12()) m.append(nn.PixelShuffle(3)) m.append(Transpose_Dim12()) m.append(nn.LeakyReLU(negative_slope=0.1, inplace=True)) m.append(nn.Conv3d(num_feat, num_feat, kernel_size=(1, 3, 3), padding=(0, 1, 1))) else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) class Mlp_GEGLU(nn.Module): """ Multilayer perceptron with gated linear unit (GEGLU). Ref. "GLU Variants Improve Transformer". Args: x: (B, D, H, W, C) Returns: x: (B, D, H, W, C) """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc11 = nn.Linear(in_features, hidden_features) self.fc12 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.act(self.fc11(x)) * self.fc12(x) x = self.drop(x) x = self.fc2(x) return x class WindowAttention(nn.Module): """ Window based multi-head mutual attention and self attention. Args: dim (int): Number of input channels. window_size (tuple[int]): The temporal length, height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set mut_attn (bool): If True, add mutual attention to the module. Default: True """ def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, mut_attn=True): super().__init__() self.dim = dim self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.mut_attn = mut_attn # self attention with relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH self.register_buffer("relative_position_index", self.get_position_index(window_size)) self.qkv_self = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) # mutual attention with sine position encoding if self.mut_attn: self.register_buffer("position_bias", self.get_sine_position_encoding(window_size[1:], dim // 2, normalize=True)) self.qkv_mut = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(2 * dim, dim) self.softmax = nn.Softmax(dim=-1) trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self, x, mask=None): """ Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, N, N) or None """ # self attention B_, N, C = x.shape qkv = self.qkv_self(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C x_out = self.attention(q, k, v, mask, (B_, N, C), relative_position_encoding=True) # mutual attention if self.mut_attn: qkv = self.qkv_mut(x + self.position_bias.repeat(1, 2, 1)).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) (q1, q2), (k1, k2), (v1, v2) = torch.chunk(qkv[0], 2, dim=2), torch.chunk(qkv[1], 2, dim=2), torch.chunk( qkv[2], 2, dim=2) # B_, nH, N/2, C x1_aligned = self.attention(q2, k1, v1, mask, (B_, N // 2, C), relative_position_encoding=False) x2_aligned = self.attention(q1, k2, v2, mask, (B_, N // 2, C), relative_position_encoding=False) x_out = torch.cat([torch.cat([x1_aligned, x2_aligned], 1), x_out], 2) # projection x = self.proj(x_out) return x def attention(self, q, k, v, mask, x_shape, relative_position_encoding=True): B_, N, C = x_shape attn = (q * self.scale) @ k.transpose(-2, -1) if relative_position_encoding: relative_position_bias = self.relative_position_bias_table[ self.relative_position_index[:N, :N].reshape(-1)].reshape(N, N, -1) # Wd*Wh*Ww, Wd*Wh*Ww,nH attn = attn + relative_position_bias.permute(2, 0, 1).unsqueeze(0) # B_, nH, N, N if mask is None: attn = self.softmax(attn) else: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask[:, :N, :N].unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) return x def get_position_index(self, window_size): ''' Get pair-wise relative position index for each token inside the window. ''' coords_d = torch.arange(window_size[0]) coords_h = torch.arange(window_size[1]) coords_w = torch.arange(window_size[2]) coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 2] += window_size[2] - 1 relative_coords[:, :, 0] *= (2 * window_size[1] - 1) * (2 * window_size[2] - 1) relative_coords[:, :, 1] *= (2 * window_size[2] - 1) relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww return relative_position_index def get_sine_position_encoding(self, HW, num_pos_feats=64, temperature=10000, normalize=False, scale=None): """ Get sine position encoding """ if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi not_mask = torch.ones([1, HW[0], HW[1]]) y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * scale dim_t = torch.arange(num_pos_feats, dtype=torch.float32) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) # BxCxHxW pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_embed = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos_embed.flatten(2).permute(0, 2, 1).contiguous() class TMSA(nn.Module): """ Temporal Mutual Self Attention (TMSA). Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. num_heads (int): Number of attention heads. window_size (tuple[int]): Window size. shift_size (tuple[int]): Shift size for mutual and self attention. mut_attn (bool): If True, use mutual and self attention. Default: True. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True. qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop_path (float, optional): Stochastic depth rate. Default: 0.0. act_layer (nn.Module, optional): Activation layer. Default: nn.GELU. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm. use_checkpoint_attn (bool): If True, use torch.checkpoint for attention modules. Default: False. use_checkpoint_ffn (bool): If True, use torch.checkpoint for feed-forward modules. Default: False. """ def __init__(self, dim, input_resolution, num_heads, window_size=(6, 8, 8), shift_size=(0, 0, 0), mut_attn=True, mlp_ratio=2., qkv_bias=True, qk_scale=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint_attn=False, use_checkpoint_ffn=False ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.use_checkpoint_attn = use_checkpoint_attn self.use_checkpoint_ffn = use_checkpoint_ffn assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size" assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size" assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention(dim, window_size=self.window_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, mut_attn=mut_attn) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp_GEGLU(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) def forward_part1(self, x, mask_matrix): B, D, H, W, C = x.shape window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) x = self.norm1(x) # pad feature maps to multiples of window size pad_l = pad_t = pad_d0 = 0 pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] pad_b = (window_size[1] - H % window_size[1]) % window_size[1] pad_r = (window_size[2] - W % window_size[2]) % window_size[2] x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1), mode='constant') _, Dp, Hp, Wp, _ = x.shape # cyclic shift if any(i > 0 for i in shift_size): shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C # attention / shifted attention attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C # merge windows attn_windows = attn_windows.view(-1, *(window_size + (C,))) shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C # reverse cyclic shift if any(i > 0 for i in shift_size): x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) else: x = shifted_x if pad_d1 > 0 or pad_r > 0 or pad_b > 0: x = x[:, :D, :H, :W, :] x = self.drop_path(x) return x def forward_part2(self, x): return self.drop_path(self.mlp(self.norm2(x))) def forward(self, x, mask_matrix): """ Forward function. Args: x: Input feature, tensor size (B, D, H, W, C). mask_matrix: Attention mask for cyclic shift. """ # attention if self.use_checkpoint_attn: x = x + checkpoint.checkpoint(self.forward_part1, x, mask_matrix) else: x = x + self.forward_part1(x, mask_matrix) # feed-forward if self.use_checkpoint_ffn: x = x + checkpoint.checkpoint(self.forward_part2, x) else: x = x + self.forward_part2(x) return x class TMSAG(nn.Module): """ Temporal Mutual Self Attention Group (TMSAG). Args: dim (int): Number of feature channels input_resolution (tuple[int]): Input resolution. depth (int): Depths of this stage. num_heads (int): Number of attention head. window_size (tuple[int]): Local window size. Default: (6,8,8). shift_size (tuple[int]): Shift size for mutual and self attention. Default: None. mut_attn (bool): If True, use mutual and self attention. Default: True. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 2. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm use_checkpoint_attn (bool): If True, use torch.checkpoint for attention modules. Default: False. use_checkpoint_ffn (bool): If True, use torch.checkpoint for feed-forward modules. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size=[6, 8, 8], shift_size=None, mut_attn=True, mlp_ratio=2., qkv_bias=False, qk_scale=None, drop_path=0., norm_layer=nn.LayerNorm, use_checkpoint_attn=False, use_checkpoint_ffn=False ): super().__init__() self.input_resolution = input_resolution self.window_size = window_size self.shift_size = list(i // 2 for i in window_size) if shift_size is None else shift_size # build blocks self.blocks = nn.ModuleList([ TMSA( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=[0, 0, 0] if i % 2 == 0 else self.shift_size, mut_attn=mut_attn, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, use_checkpoint_attn=use_checkpoint_attn, use_checkpoint_ffn=use_checkpoint_ffn ) for i in range(depth)]) def forward(self, x): """ Forward function. Args: x: Input feature, tensor size (B, C, D, H, W). """ # calculate attention mask for attention B, C, D, H, W = x.shape window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) x = rearrange(x, 'b c d h w -> b d h w c') Dp = int(np.ceil(D / window_size[0])) * window_size[0] Hp = int(np.ceil(H / window_size[1])) * window_size[1] Wp = int(np.ceil(W / window_size[2])) * window_size[2] attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) for blk in self.blocks: x = blk(x, attn_mask) x = x.view(B, D, H, W, -1) x = rearrange(x, 'b d h w c -> b c d h w') return x class RTMSA(nn.Module): """ Residual Temporal Mutual Self Attention (RTMSA). Only used in stage 8. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True. qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm. use_checkpoint_attn (bool): If True, use torch.checkpoint for attention modules. Default: False. use_checkpoint_ffn (bool): If True, use torch.checkpoint for feed-forward modules. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=2., qkv_bias=True, qk_scale=None, drop_path=0., norm_layer=nn.LayerNorm, use_checkpoint_attn=False, use_checkpoint_ffn=None ): super(RTMSA, self).__init__() self.dim = dim self.input_resolution = input_resolution self.residual_group = TMSAG(dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads, window_size=window_size, mut_attn=False, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path=drop_path, norm_layer=norm_layer, use_checkpoint_attn=use_checkpoint_attn, use_checkpoint_ffn=use_checkpoint_ffn ) self.linear = nn.Linear(dim, dim) def forward(self, x): return x + self.linear(self.residual_group(x).transpose(1, 4)).transpose(1, 4) class Stage(nn.Module): """Residual Temporal Mutual Self Attention Group and Parallel Warping. Args: in_dim (int): Number of input channels. dim (int): Number of channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. mul_attn_ratio (float): Ratio of mutual attention layers. Default: 0.75. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pa_frames (float): Number of warpped frames. Default: 2. deformable_groups (float): Number of deformable groups. Default: 16. reshape (str): Downscale (down), upscale (up) or keep the size (none). max_residue_magnitude (float): Maximum magnitude of the residual of optical flow. use_checkpoint_attn (bool): If True, use torch.checkpoint for attention modules. Default: False. use_checkpoint_ffn (bool): If True, use torch.checkpoint for feed-forward modules. Default: False. """ def __init__(self, in_dim, dim, input_resolution, depth, num_heads, window_size, mul_attn_ratio=0.75, mlp_ratio=2., qkv_bias=True, qk_scale=None, drop_path=0., norm_layer=nn.LayerNorm, pa_frames=2, deformable_groups=16, reshape=None, max_residue_magnitude=10, use_checkpoint_attn=False, use_checkpoint_ffn=False ): super(Stage, self).__init__() self.pa_frames = pa_frames # reshape the tensor if reshape == 'none': self.reshape = nn.Sequential(Rearrange('n c d h w -> n d h w c'), nn.LayerNorm(dim), Rearrange('n d h w c -> n c d h w')) elif reshape == 'down': self.reshape = nn.Sequential(Rearrange('n c d (h neih) (w neiw) -> n d h w (neiw neih c)', neih=2, neiw=2), nn.LayerNorm(4 * in_dim), nn.Linear(4 * in_dim, dim), Rearrange('n d h w c -> n c d h w')) elif reshape == 'up': self.reshape = nn.Sequential(Rearrange('n (neiw neih c) d h w -> n d (h neih) (w neiw) c', neih=2, neiw=2), nn.LayerNorm(in_dim // 4), nn.Linear(in_dim // 4, dim), Rearrange('n d h w c -> n c d h w')) # mutual and self attention self.residual_group1 = TMSAG(dim=dim, input_resolution=input_resolution, depth=int(depth * mul_attn_ratio), num_heads=num_heads, window_size=(2, window_size[1], window_size[2]), mut_attn=True, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path=drop_path, norm_layer=norm_layer, use_checkpoint_attn=use_checkpoint_attn, use_checkpoint_ffn=use_checkpoint_ffn ) self.linear1 = nn.Linear(dim, dim) # only self attention self.residual_group2 = TMSAG(dim=dim, input_resolution=input_resolution, depth=depth - int(depth * mul_attn_ratio), num_heads=num_heads, window_size=window_size, mut_attn=False, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path=drop_path, norm_layer=norm_layer, use_checkpoint_attn=True, use_checkpoint_ffn=use_checkpoint_ffn ) self.linear2 = nn.Linear(dim, dim) # parallel warping self.pa_deform = DCNv2PackFlowGuided(dim, dim, 3, padding=1, deformable_groups=deformable_groups, max_residue_magnitude=max_residue_magnitude, pa_frames=pa_frames) self.pa_fuse = Mlp_GEGLU(dim * (1 + 2), dim * (1 + 2), dim) def forward(self, x, flows_backward, flows_forward): x = self.reshape(x) x = self.linear1(self.residual_group1(x).transpose(1, 4)).transpose(1, 4) + x x = self.linear2(self.residual_group2(x).transpose(1, 4)).transpose(1, 4) + x x = x.transpose(1, 2) x_backward, x_forward = getattr(self, f'get_aligned_feature_{self.pa_frames}frames')(x, flows_backward, flows_forward) x = self.pa_fuse(torch.cat([x, x_backward, x_forward], 2).permute(0, 1, 3, 4, 2)).permute(0, 4, 1, 2, 3) return x def get_aligned_feature_2frames(self, x, flows_backward, flows_forward): '''Parallel feature warping for 2 frames.''' # backward n = x.size(1) x_backward = [torch.zeros_like(x[:, -1, ...])] for i in range(n - 1, 0, -1): x_i = x[:, i, ...] flow = flows_backward[0][:, i - 1, ...] x_i_warped = flow_warp(x_i, flow.permute(0, 2, 3, 1), 'bilinear') # frame i+1 aligned towards i x_backward.insert(0, self.pa_deform(x_i, [x_i_warped], x[:, i - 1, ...], [flow])) # forward x_forward = [torch.zeros_like(x[:, 0, ...])] for i in range(0, n - 1): x_i = x[:, i, ...] flow = flows_forward[0][:, i, ...] x_i_warped = flow_warp(x_i, flow.permute(0, 2, 3, 1), 'bilinear') # frame i-1 aligned towards i x_forward.append(self.pa_deform(x_i, [x_i_warped], x[:, i + 1, ...], [flow])) return [torch.stack(x_backward, 1), torch.stack(x_forward, 1)] def get_aligned_feature_4frames(self, x, flows_backward, flows_forward): '''Parallel feature warping for 4 frames.''' # backward n = x.size(1) x_backward = [torch.zeros_like(x[:, -1, ...])] for i in range(n, 1, -1): x_i = x[:, i - 1, ...] flow1 = flows_backward[0][:, i - 2, ...] if i == n: x_ii = torch.zeros_like(x[:, n - 2, ...]) flow2 = torch.zeros_like(flows_backward[1][:, n - 3, ...]) else: x_ii = x[:, i, ...] flow2 = flows_backward[1][:, i - 2, ...] x_i_warped = flow_warp(x_i, flow1.permute(0, 2, 3, 1), 'bilinear') # frame i+1 aligned towards i x_ii_warped = flow_warp(x_ii, flow2.permute(0, 2, 3, 1), 'bilinear') # frame i+2 aligned towards i x_backward.insert(0, self.pa_deform(torch.cat([x_i, x_ii], 1), [x_i_warped, x_ii_warped], x[:, i - 2, ...], [flow1, flow2])) # forward x_forward = [torch.zeros_like(x[:, 0, ...])] for i in range(-1, n - 2): x_i = x[:, i + 1, ...] flow1 = flows_forward[0][:, i + 1, ...] if i == -1: x_ii = torch.zeros_like(x[:, 1, ...]) flow2 = torch.zeros_like(flows_forward[1][:, 0, ...]) else: x_ii = x[:, i, ...] flow2 = flows_forward[1][:, i, ...] x_i_warped = flow_warp(x_i, flow1.permute(0, 2, 3, 1), 'bilinear') # frame i-1 aligned towards i x_ii_warped = flow_warp(x_ii, flow2.permute(0, 2, 3, 1), 'bilinear') # frame i-2 aligned towards i x_forward.append( self.pa_deform(torch.cat([x_i, x_ii], 1), [x_i_warped, x_ii_warped], x[:, i + 2, ...], [flow1, flow2])) return [torch.stack(x_backward, 1), torch.stack(x_forward, 1)] def get_aligned_feature_6frames(self, x, flows_backward, flows_forward): '''Parallel feature warping for 6 frames.''' # backward n = x.size(1) x_backward = [torch.zeros_like(x[:, -1, ...])] for i in range(n + 1, 2, -1): x_i = x[:, i - 2, ...] flow1 = flows_backward[0][:, i - 3, ...] if i == n + 1: x_ii = torch.zeros_like(x[:, -1, ...]) flow2 = torch.zeros_like(flows_backward[1][:, -1, ...]) x_iii = torch.zeros_like(x[:, -1, ...]) flow3 = torch.zeros_like(flows_backward[2][:, -1, ...]) elif i == n: x_ii = x[:, i - 1, ...] flow2 = flows_backward[1][:, i - 3, ...] x_iii = torch.zeros_like(x[:, -1, ...]) flow3 = torch.zeros_like(flows_backward[2][:, -1, ...]) else: x_ii = x[:, i - 1, ...] flow2 = flows_backward[1][:, i - 3, ...] x_iii = x[:, i, ...] flow3 = flows_backward[2][:, i - 3, ...] x_i_warped = flow_warp(x_i, flow1.permute(0, 2, 3, 1), 'bilinear') # frame i+1 aligned towards i x_ii_warped = flow_warp(x_ii, flow2.permute(0, 2, 3, 1), 'bilinear') # frame i+2 aligned towards i x_iii_warped = flow_warp(x_iii, flow3.permute(0, 2, 3, 1), 'bilinear') # frame i+3 aligned towards i x_backward.insert(0, self.pa_deform(torch.cat([x_i, x_ii, x_iii], 1), [x_i_warped, x_ii_warped, x_iii_warped], x[:, i - 3, ...], [flow1, flow2, flow3])) # forward x_forward = [torch.zeros_like(x[:, 0, ...])] for i in range(0, n - 1): x_i = x[:, i, ...] flow1 = flows_forward[0][:, i, ...] if i == 0: x_ii = torch.zeros_like(x[:, 0, ...]) flow2 = torch.zeros_like(flows_forward[1][:, 0, ...]) x_iii = torch.zeros_like(x[:, 0, ...]) flow3 = torch.zeros_like(flows_forward[2][:, 0, ...]) elif i == 1: x_ii = x[:, i - 1, ...] flow2 = flows_forward[1][:, i - 1, ...] x_iii = torch.zeros_like(x[:, 0, ...]) flow3 = torch.zeros_like(flows_forward[2][:, 0, ...]) else: x_ii = x[:, i - 1, ...] flow2 = flows_forward[1][:, i - 1, ...] x_iii = x[:, i - 2, ...] flow3 = flows_forward[2][:, i - 2, ...] x_i_warped = flow_warp(x_i, flow1.permute(0, 2, 3, 1), 'bilinear') # frame i-1 aligned towards i x_ii_warped = flow_warp(x_ii, flow2.permute(0, 2, 3, 1), 'bilinear') # frame i-2 aligned towards i x_iii_warped = flow_warp(x_iii, flow3.permute(0, 2, 3, 1), 'bilinear') # frame i-3 aligned towards i x_forward.append(self.pa_deform(torch.cat([x_i, x_ii, x_iii], 1), [x_i_warped, x_ii_warped, x_iii_warped], x[:, i + 1, ...], [flow1, flow2, flow3])) return [torch.stack(x_backward, 1), torch.stack(x_forward, 1)] class VRT(nn.Module): """ Video Restoration Transformer (VRT). A PyTorch impl of : `VRT: A Video Restoration Transformer` - https://arxiv.org/pdf/2201.00000 Args: upscale (int): Upscaling factor. Set as 1 for video deblurring, etc. Default: 4. in_chans (int): Number of input image channels. Default: 3. img_size (int | tuple(int)): Size of input image. Default: [6, 64, 64]. window_size (int | tuple(int)): Window size. Default: (6,8,8). depths (list[int]): Depths of each Transformer stage. indep_reconsts (list[int]): Layers that extract features of different frames independently. embed_dims (list[int]): Number of linear projection output channels. num_heads (list[int]): Number of attention head of each stage. mul_attn_ratio (float): Ratio of mutual attention layers. Default: 0.75. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 2. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True. qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer (obj): Normalization layer. Default: nn.LayerNorm. spynet_path (str): Pretrained SpyNet model path. pa_frames (float): Number of warpped frames. Default: 2. deformable_groups (float): Number of deformable groups. Default: 16. recal_all_flows (bool): If True, derive (t,t+2) and (t,t+3) flows from (t,t+1). Default: False. nonblind_denoising (bool): If True, conduct experiments on non-blind denoising. Default: False. use_checkpoint_attn (bool): If True, use torch.checkpoint for attention modules. Default: False. use_checkpoint_ffn (bool): If True, use torch.checkpoint for feed-forward modules. Default: False. no_checkpoint_attn_blocks (list[int]): Layers without torch.checkpoint for attention modules. no_checkpoint_ffn_blocks (list[int]): Layers without torch.checkpoint for feed-forward modules. """ def __init__(self, upscale=4, in_chans=3, img_size=[6, 64, 64], window_size=[6, 8, 8], depths=[8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4], indep_reconsts=[11, 12], embed_dims=[120, 120, 120, 120, 120, 120, 120, 180, 180, 180, 180, 180, 180], num_heads=[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6], mul_attn_ratio=0.75, mlp_ratio=2., qkv_bias=True, qk_scale=None, drop_path_rate=0.2, norm_layer=nn.LayerNorm, spynet_path=None, pa_frames=2, deformable_groups=16, recal_all_flows=False, nonblind_denoising=False, use_checkpoint_attn=False, use_checkpoint_ffn=False, no_checkpoint_attn_blocks=[], no_checkpoint_ffn_blocks=[], ): super().__init__() self.in_chans = in_chans self.upscale = upscale self.pa_frames = pa_frames self.recal_all_flows = recal_all_flows self.nonblind_denoising = nonblind_denoising # conv_first self.conv_first = nn.Conv3d(in_chans*(1+2*4)+1 if self.nonblind_denoising else in_chans*(1+2*4), embed_dims[0], kernel_size=(1, 3, 3), padding=(0, 1, 1)) # main body self.spynet = SpyNet(spynet_path, [2, 3, 4, 5]) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule reshapes = ['none', 'down', 'down', 'down', 'up', 'up', 'up'] scales = [1, 2, 4, 8, 4, 2, 1] use_checkpoint_attns = [False if i in no_checkpoint_attn_blocks else use_checkpoint_attn for i in range(len(depths))] use_checkpoint_ffns = [False if i in no_checkpoint_ffn_blocks else use_checkpoint_ffn for i in range(len(depths))] # stage 1- 7 for i in range(7): setattr(self, f'stage{i + 1}', Stage( in_dim=embed_dims[i - 1], dim=embed_dims[i], input_resolution=(img_size[0], img_size[1] // scales[i], img_size[2] // scales[i]), depth=depths[i], num_heads=num_heads[i], mul_attn_ratio=mul_attn_ratio, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], norm_layer=norm_layer, pa_frames=pa_frames, deformable_groups=deformable_groups, reshape=reshapes[i], max_residue_magnitude=10 / scales[i], use_checkpoint_attn=use_checkpoint_attns[i], use_checkpoint_ffn=use_checkpoint_ffns[i], ) ) # stage 8 self.stage8 = nn.ModuleList( [nn.Sequential( Rearrange('n c d h w -> n d h w c'), nn.LayerNorm(embed_dims[6]), nn.Linear(embed_dims[6], embed_dims[7]), Rearrange('n d h w c -> n c d h w') )] ) for i in range(7, len(depths)): self.stage8.append( RTMSA(dim=embed_dims[i], input_resolution=img_size, depth=depths[i], num_heads=num_heads[i], window_size=[1, window_size[1], window_size[2]] if i in indep_reconsts else window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], norm_layer=norm_layer, use_checkpoint_attn=use_checkpoint_attns[i], use_checkpoint_ffn=use_checkpoint_ffns[i] ) ) self.norm = norm_layer(embed_dims[-1]) self.conv_after_body = nn.Linear(embed_dims[-1], embed_dims[0]) # reconstruction num_feat = 64 if self.upscale == 1: # for video deblurring, etc. self.conv_last = nn.Conv3d(embed_dims[0], in_chans, kernel_size=(1, 3, 3), padding=(0, 1, 1)) else: # for video sr self.conv_before_upsample = nn.Sequential( nn.Conv3d(embed_dims[0], num_feat, kernel_size=(1, 3, 3), padding=(0, 1, 1)), nn.LeakyReLU(inplace=True)) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv3d(num_feat, in_chans, kernel_size=(1, 3, 3), padding=(0, 1, 1)) def forward(self, x): # x: (N, D, C, H, W) # obtain noise level map if self.nonblind_denoising: x, noise_level_map = x[:, :, :self.in_chans, :, :], x[:, :, self.in_chans:, :, :] x_lq = x.clone() # calculate flows flows_backward, flows_forward = self.get_flows(x) # warp input x_backward, x_forward = self.get_aligned_image_2frames(x, flows_backward[0], flows_forward[0]) x = torch.cat([x, x_backward, x_forward], 2) # concatenate noise level map if self.nonblind_denoising: x = torch.cat([x, noise_level_map], 2) # main network if self.upscale == 1: # video deblurring, etc. x = self.conv_first(x.transpose(1, 2)) x = x + self.conv_after_body( self.forward_features(x, flows_backward, flows_forward).transpose(1, 4)).transpose(1, 4) x = self.conv_last(x).transpose(1, 2) return x + x_lq else: # video sr x = self.conv_first(x.transpose(1, 2)) x = x + self.conv_after_body( self.forward_features(x, flows_backward, flows_forward).transpose(1, 4)).transpose(1, 4) x = self.conv_last(self.upsample(self.conv_before_upsample(x))).transpose(1, 2) _, _, C, H, W = x.shape return x + torch.nn.functional.interpolate(x_lq, size=(C, H, W), mode='trilinear', align_corners=False) def get_flows(self, x): ''' Get flows for 2 frames, 4 frames or 6 frames.''' if self.pa_frames == 2: flows_backward, flows_forward = self.get_flow_2frames(x) elif self.pa_frames == 4: flows_backward_2frames, flows_forward_2frames = self.get_flow_2frames(x) flows_backward_4frames, flows_forward_4frames = self.get_flow_4frames(flows_forward_2frames, flows_backward_2frames) flows_backward = flows_backward_2frames + flows_backward_4frames flows_forward = flows_forward_2frames + flows_forward_4frames elif self.pa_frames == 6: flows_backward_2frames, flows_forward_2frames = self.get_flow_2frames(x) flows_backward_4frames, flows_forward_4frames = self.get_flow_4frames(flows_forward_2frames, flows_backward_2frames) flows_backward_6frames, flows_forward_6frames = self.get_flow_6frames(flows_forward_2frames, flows_backward_2frames, flows_forward_4frames, flows_backward_4frames) flows_backward = flows_backward_2frames + flows_backward_4frames + flows_backward_6frames flows_forward = flows_forward_2frames + flows_forward_4frames + flows_forward_6frames return flows_backward, flows_forward def get_flow_2frames(self, x): '''Get flow between frames t and t+1 from x.''' b, n, c, h, w = x.size() x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) # backward flows_backward = self.spynet(x_1, x_2) flows_backward = [flow.view(b, n-1, 2, h // (2 ** i), w // (2 ** i)) for flow, i in zip(flows_backward, range(4))] # forward flows_forward = self.spynet(x_2, x_1) flows_forward = [flow.view(b, n-1, 2, h // (2 ** i), w // (2 ** i)) for flow, i in zip(flows_forward, range(4))] return flows_backward, flows_forward def get_flow_4frames(self, flows_forward, flows_backward): '''Get flow between t and t+2 from (t,t+1) and (t+1,t+2).''' # backward d = flows_forward[0].shape[1] flows_backward2 = [] for flows in flows_backward: flow_list = [] for i in range(d - 1, 0, -1): flow_n1 = flows[:, i - 1, :, :, :] # flow from i+1 to i flow_n2 = flows[:, i, :, :, :] # flow from i+2 to i+1 flow_list.insert(0, flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))) # flow from i+2 to i flows_backward2.append(torch.stack(flow_list, 1)) # forward flows_forward2 = [] for flows in flows_forward: flow_list = [] for i in range(1, d): flow_n1 = flows[:, i, :, :, :] # flow from i-1 to i flow_n2 = flows[:, i - 1, :, :, :] # flow from i-2 to i-1 flow_list.append(flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))) # flow from i-2 to i flows_forward2.append(torch.stack(flow_list, 1)) return flows_backward2, flows_forward2 def get_flow_6frames(self, flows_forward, flows_backward, flows_forward2, flows_backward2): '''Get flow between t and t+3 from (t,t+2) and (t+2,t+3).''' # backward d = flows_forward2[0].shape[1] flows_backward3 = [] for flows, flows2 in zip(flows_backward, flows_backward2): flow_list = [] for i in range(d - 1, 0, -1): flow_n1 = flows2[:, i - 1, :, :, :] # flow from i+2 to i flow_n2 = flows[:, i + 1, :, :, :] # flow from i+3 to i+2 flow_list.insert(0, flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))) # flow from i+3 to i flows_backward3.append(torch.stack(flow_list, 1)) # forward flows_forward3 = [] for flows, flows2 in zip(flows_forward, flows_forward2): flow_list = [] for i in range(2, d + 1): flow_n1 = flows2[:, i - 1, :, :, :] # flow from i-2 to i flow_n2 = flows[:, i - 2, :, :, :] # flow from i-3 to i-2 flow_list.append(flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))) # flow from i-3 to i flows_forward3.append(torch.stack(flow_list, 1)) return flows_backward3, flows_forward3 def get_aligned_image_2frames(self, x, flows_backward, flows_forward): '''Parallel feature warping for 2 frames.''' # backward n = x.size(1) x_backward = [torch.zeros_like(x[:, -1, ...]).repeat(1, 4, 1, 1)] for i in range(n - 1, 0, -1): x_i = x[:, i, ...] flow = flows_backward[:, i - 1, ...] x_backward.insert(0, flow_warp(x_i, flow.permute(0, 2, 3, 1), 'nearest4')) # frame i+1 aligned towards i # forward x_forward = [torch.zeros_like(x[:, 0, ...]).repeat(1, 4, 1, 1)] for i in range(0, n - 1): x_i = x[:, i, ...] flow = flows_forward[:, i, ...] x_forward.append(flow_warp(x_i, flow.permute(0, 2, 3, 1), 'nearest4')) # frame i-1 aligned towards i return [torch.stack(x_backward, 1), torch.stack(x_forward, 1)] def forward_features(self, x, flows_backward, flows_forward): '''Main network for feature extraction.''' x1 = self.stage1(x, flows_backward[0::4], flows_forward[0::4]) x2 = self.stage2(x1, flows_backward[1::4], flows_forward[1::4]) x3 = self.stage3(x2, flows_backward[2::4], flows_forward[2::4]) x4 = self.stage4(x3, flows_backward[3::4], flows_forward[3::4]) x = self.stage5(x4, flows_backward[2::4], flows_forward[2::4]) x = self.stage6(x + x3, flows_backward[1::4], flows_forward[1::4]) x = self.stage7(x + x2, flows_backward[0::4], flows_forward[0::4]) x = x + x1 for layer in self.stage8: x = layer(x) x = rearrange(x, 'n c d h w -> n d h w c') x = self.norm(x) x = rearrange(x, 'n d h w c -> n c d h w') return x if __name__ == '__main__': device = torch.device('cpu') upscale = 4 window_size = 8 height = (256 // upscale // window_size) * window_size width = (256 // upscale // window_size) * window_size model = VRT(upscale=4, img_size=[6, 64, 64], window_size=[6, 8, 8], depths=[8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4], indep_reconsts=[11, 12], embed_dims=[120, 120, 120, 120, 120, 120, 120, 180, 180, 180, 180, 180, 180], num_heads=[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6], spynet_path=None, pa_frames=2, deformable_groups=12 ).to(device) print(model) print('{:>16s} : {:<.4f} [M]'.format('#Params', sum(map(lambda x: x.numel(), model.parameters())) / 10 ** 6)) x = torch.randn((2, 12, 3, height, width)).to(device) x = model(x) print(x.shape)