import math import torch.nn as nn import models.basicblock as B """ # -------------------------------------------- # simplified information multi-distillation # network (IMDN) for SR # -------------------------------------------- References: @inproceedings{hui2019lightweight, title={Lightweight Image Super-Resolution with Information Multi-distillation Network}, author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)}, pages={2024--2032}, year={2019} } @inproceedings{zhang2019aim, title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results}, author={Kai Zhang and Shuhang Gu and Radu Timofte and others}, booktitle={IEEE International Conference on Computer Vision Workshops}, year={2019} } # -------------------------------------------- """ # -------------------------------------------- # modified version, https://github.com/Zheng222/IMDN # first place solution for AIM 2019 challenge # -------------------------------------------- class IMDN(nn.Module): def __init__(self, in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle', negative_slope=0.05): """ in_nc: channel number of input out_nc: channel number of output nc: channel number nb: number of residual blocks upscale: up-scale factor act_mode: activation function upsample_mode: 'upconv' | 'pixelshuffle' | 'convtranspose' """ super(IMDN, self).__init__() assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL' m_head = B.conv(in_nc, nc, mode='C') m_body = [B.IMDBlock(nc, nc, mode='C'+act_mode, negative_slope=negative_slope) for _ in range(nb)] m_body.append(B.conv(nc, nc, mode='C')) if upsample_mode == 'upconv': upsample_block = B.upsample_upconv elif upsample_mode == 'pixelshuffle': upsample_block = B.upsample_pixelshuffle elif upsample_mode == 'convtranspose': upsample_block = B.upsample_convtranspose else: raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) m_uper = upsample_block(nc, out_nc, mode=str(upscale)) self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper) def forward(self, x): x = self.model(x) return x