import math import torch.nn as nn import models.basicblock as B """ # -------------------------------------------- # modified SRResNet # -- MSRResNet_prior (for DPSR) # -------------------------------------------- References: @inproceedings{zhang2019deep, title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } @inproceedings{wang2018esrgan, title={Esrgan: Enhanced super-resolution generative adversarial networks}, author={Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Change Loy, Chen}, booktitle={European Conference on Computer Vision (ECCV)}, pages={0--0}, year={2018} } @inproceedings{ledig2017photo, title={Photo-realistic single image super-resolution using a generative adversarial network}, author={Ledig, Christian and Theis, Lucas and Husz{\'a}r, Ferenc and Caballero, Jose and Cunningham, Andrew and Acosta, Alejandro and Aitken, Andrew and Tejani, Alykhan and Totz, Johannes and Wang, Zehan and others}, booktitle={IEEE conference on computer vision and pattern recognition}, pages={4681--4690}, year={2017} } # -------------------------------------------- """ # -------------------------------------------- # MSRResNet super-resolver prior for DPSR # https://github.com/cszn/DPSR # https://github.com/cszn/DPSR/blob/master/models/network_srresnet.py # -------------------------------------------- class MSRResNet_prior(nn.Module): def __init__(self, in_nc=4, out_nc=3, nc=96, nb=16, upscale=4, act_mode='R', upsample_mode='upconv'): super(MSRResNet_prior, self).__init__() n_upscale = int(math.log(upscale, 2)) if upscale == 3: n_upscale = 1 m_head = B.conv(in_nc, nc, mode='C') m_body = [B.ResBlock(nc, nc, mode='C'+act_mode+'C') for _ in range(nb)] m_body.append(B.conv(nc, nc, mode='C')) if upsample_mode == 'upconv': upsample_block = B.upsample_upconv elif upsample_mode == 'pixelshuffle': upsample_block = B.upsample_pixelshuffle elif upsample_mode == 'convtranspose': upsample_block = B.upsample_convtranspose else: raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) if upscale == 3: m_uper = upsample_block(nc, nc, mode='3'+act_mode) else: m_uper = [upsample_block(nc, nc, mode='2'+act_mode) for _ in range(n_upscale)] H_conv0 = B.conv(nc, nc, mode='C'+act_mode) H_conv1 = B.conv(nc, out_nc, bias=False, mode='C') m_tail = B.sequential(H_conv0, H_conv1) self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper, m_tail) def forward(self, x): x = self.model(x) return x class SRResNet(nn.Module): def __init__(self, in_nc=3, out_nc=3, nc=64, nb=16, upscale=4, act_mode='R', upsample_mode='upconv'): super(SRResNet, self).__init__() n_upscale = int(math.log(upscale, 2)) if upscale == 3: n_upscale = 1 m_head = B.conv(in_nc, nc, mode='C') m_body = [B.ResBlock(nc, nc, mode='C'+act_mode+'C') for _ in range(nb)] m_body.append(B.conv(nc, nc, mode='C')) if upsample_mode == 'upconv': upsample_block = B.upsample_upconv elif upsample_mode == 'pixelshuffle': upsample_block = B.upsample_pixelshuffle elif upsample_mode == 'convtranspose': upsample_block = B.upsample_convtranspose else: raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) if upscale == 3: m_uper = upsample_block(nc, nc, mode='3'+act_mode) else: m_uper = [upsample_block(nc, nc, mode='2'+act_mode) for _ in range(n_upscale)] H_conv0 = B.conv(nc, nc, mode='C'+act_mode) H_conv1 = B.conv(nc, out_nc, bias=False, mode='C') m_tail = B.sequential(H_conv0, H_conv1) self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper, m_tail) def forward(self, x): x = self.model(x) return x