import random import torch.utils.data as data import utils.utils_image as util import cv2 class DatasetJPEG(data.Dataset): def __init__(self, opt): super(DatasetJPEG, self).__init__() print('Dataset: JPEG compression artifact reduction (deblocking) with quality factor. Only dataroot_H is needed.') self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.patch_size = self.opt['H_size'] if opt['H_size'] else 128 self.quality_factor = opt['quality_factor'] if opt['quality_factor'] else 40 self.quality_factor_test = opt['quality_factor_test'] if opt['quality_factor_test'] else 40 self.is_color = opt['is_color'] if opt['is_color'] else False # ------------------------------------- # get the path of H, return None if input is None # ------------------------------------- self.paths_H = util.get_image_paths(opt['dataroot_H']) def __getitem__(self, index): if self.opt['phase'] == 'train': # ------------------------------------- # get H image # ------------------------------------- H_path = self.paths_H[index] img_H = util.imread_uint(H_path, 3) L_path = H_path H, W = img_H.shape[:2] self.patch_size_plus = self.patch_size + 8 # --------------------------------- # randomly crop a large patch # --------------------------------- rnd_h = random.randint(0, max(0, H - self.patch_size_plus)) rnd_w = random.randint(0, max(0, W - self.patch_size_plus)) patch_H = img_H[rnd_h:rnd_h + self.patch_size_plus, rnd_w:rnd_w + self.patch_size_plus, ...] # --------------------------------- # augmentation - flip, rotate # --------------------------------- mode = random.randint(0, 7) patch_H = util.augment_img(patch_H, mode=mode) # --------------------------------- # HWC to CHW, numpy(uint) to tensor # --------------------------------- img_L = patch_H.copy() # --------------------------------- # set quality factor # --------------------------------- quality_factor = self.quality_factor if self.is_color: # color image img_H = img_L.copy() img_L = cv2.cvtColor(img_L, cv2.COLOR_RGB2BGR) result, encimg = cv2.imencode('.jpg', img_L, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img_L = cv2.imdecode(encimg, 1) img_L = cv2.cvtColor(img_L, cv2.COLOR_BGR2RGB) else: if random.random() > 0.5: img_L = util.rgb2ycbcr(img_L) else: img_L = cv2.cvtColor(img_L, cv2.COLOR_RGB2GRAY) img_H = img_L.copy() result, encimg = cv2.imencode('.jpg', img_L, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img_L = cv2.imdecode(encimg, 0) # --------------------------------- # randomly crop a patch # --------------------------------- H, W = img_H.shape[:2] if random.random() > 0.5: rnd_h = random.randint(0, max(0, H - self.patch_size)) rnd_w = random.randint(0, max(0, W - self.patch_size)) else: rnd_h = 0 rnd_w = 0 img_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size] img_L = img_L[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size] else: H_path = self.paths_H[index] L_path = H_path # --------------------------------- # set quality factor # --------------------------------- quality_factor = self.quality_factor_test if self.is_color: # color JPEG image deblocking img_H = util.imread_uint(H_path, 3) img_L = img_H.copy() img_L = cv2.cvtColor(img_L, cv2.COLOR_RGB2BGR) result, encimg = cv2.imencode('.jpg', img_L, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img_L = cv2.imdecode(encimg, 1) img_L = cv2.cvtColor(img_L, cv2.COLOR_BGR2RGB) else: img_H = cv2.imread(H_path, cv2.IMREAD_UNCHANGED) is_to_ycbcr = True if img_L.ndim == 3 else False if is_to_ycbcr: img_H = cv2.cvtColor(img_H, cv2.COLOR_BGR2RGB) img_H = util.rgb2ycbcr(img_H) result, encimg = cv2.imencode('.jpg', img_H, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img_L = cv2.imdecode(encimg, 0) img_L, img_H = util.uint2tensor3(img_L), util.uint2tensor3(img_H) return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.paths_H)