import os import cv2 import numpy as np import torch import random from os import path as osp from torch.nn import functional as F from abc import ABCMeta, abstractmethod def scandir(dir_path, suffix=None, recursive=False, full_path=False): """Scan a directory to find the interested files. Args: dir_path (str): Path of the directory. suffix (str | tuple(str), optional): File suffix that we are interested in. Default: None. recursive (bool, optional): If set to True, recursively scan the directory. Default: False. full_path (bool, optional): If set to True, include the dir_path. Default: False. Returns: A generator for all the interested files with relative paths. """ if (suffix is not None) and not isinstance(suffix, (str, tuple)): raise TypeError('"suffix" must be a string or tuple of strings') root = dir_path def _scandir(dir_path, suffix, recursive): for entry in os.scandir(dir_path): if not entry.name.startswith('.') and entry.is_file(): if full_path: return_path = entry.path else: return_path = osp.relpath(entry.path, root) if suffix is None: yield return_path elif return_path.endswith(suffix): yield return_path else: if recursive: yield from _scandir(entry.path, suffix=suffix, recursive=recursive) else: continue return _scandir(dir_path, suffix=suffix, recursive=recursive) def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False): """Read a sequence of images from a given folder path. Args: path (list[str] | str): List of image paths or image folder path. require_mod_crop (bool): Require mod crop for each image. Default: False. scale (int): Scale factor for mod_crop. Default: 1. return_imgname(bool): Whether return image names. Default False. Returns: Tensor: size (t, c, h, w), RGB, [0, 1]. list[str]: Returned image name list. """ if isinstance(path, list): img_paths = path else: img_paths = sorted(list(scandir(path, full_path=True))) imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths] if require_mod_crop: imgs = [mod_crop(img, scale) for img in imgs] imgs = img2tensor(imgs, bgr2rgb=True, float32=True) imgs = torch.stack(imgs, dim=0) if return_imgname: imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths] return imgs, imgnames else: return imgs def img2tensor(imgs, bgr2rgb=True, float32=True): """Numpy array to tensor. Args: imgs (list[ndarray] | ndarray): Input images. bgr2rgb (bool): Whether to change bgr to rgb. float32 (bool): Whether to change to float32. Returns: list[tensor] | tensor: Tensor images. If returned results only have one element, just return tensor. """ def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == 'float64': img = img.astype('float32') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] else: return _totensor(imgs, bgr2rgb, float32) def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to [min, max], values will be normalized to [0, 1]. Args: tensor (Tensor or list[Tensor]): Accept shapes: 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). We use vertical flip and transpose for rotation implementation. All the images in the list use the same augmentation. Args: imgs (list[ndarray] | ndarray): Images to be augmented. If the input is an ndarray, it will be transformed to a list. hflip (bool): Horizontal flip. Default: True. rotation (bool): Ratotation. Default: True. flows (list[ndarray]: Flows to be augmented. If the input is an ndarray, it will be transformed to a list. Dimension is (h, w, 2). Default: None. return_status (bool): Return the status of flip and rotation. Default: False. Returns: list[ndarray] | ndarray: Augmented images and flows. If returned results only have one element, just return ndarray. """ hflip = hflip and random.random() < 0.5 vflip = rotation and random.random() < 0.5 rot90 = rotation and random.random() < 0.5 def _augment(img): if hflip: # horizontal cv2.flip(img, 1, img) if vflip: # vertical cv2.flip(img, 0, img) if rot90: img = img.transpose(1, 0, 2) return img def _augment_flow(flow): if hflip: # horizontal cv2.flip(flow, 1, flow) flow[:, :, 0] *= -1 if vflip: # vertical cv2.flip(flow, 0, flow) flow[:, :, 1] *= -1 if rot90: flow = flow.transpose(1, 0, 2) flow = flow[:, :, [1, 0]] return flow if not isinstance(imgs, list): imgs = [imgs] imgs = [_augment(img) for img in imgs] if len(imgs) == 1: imgs = imgs[0] if flows is not None: if not isinstance(flows, list): flows = [flows] flows = [_augment_flow(flow) for flow in flows] if len(flows) == 1: flows = flows[0] return imgs, flows else: if return_status: return imgs, (hflip, vflip, rot90) else: return imgs def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None): """Paired random crop. Support Numpy array and Tensor inputs. It crops lists of lq and gt images with corresponding locations. Args: img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images should have the same shape. If the input is an ndarray, it will be transformed to a list containing itself. img_lqs (list[ndarray] | ndarray): LQ images. Note that all images should have the same shape. If the input is an ndarray, it will be transformed to a list containing itself. gt_patch_size (int): GT patch size. scale (int): Scale factor. gt_path (str): Path to ground-truth. Default: None. Returns: list[ndarray] | ndarray: GT images and LQ images. If returned results only have one element, just return ndarray. """ if not isinstance(img_gts, list): img_gts = [img_gts] if not isinstance(img_lqs, list): img_lqs = [img_lqs] # determine input type: Numpy array or Tensor input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy' if input_type == 'Tensor': h_lq, w_lq = img_lqs[0].size()[-2:] h_gt, w_gt = img_gts[0].size()[-2:] else: h_lq, w_lq = img_lqs[0].shape[0:2] h_gt, w_gt = img_gts[0].shape[0:2] lq_patch_size = gt_patch_size // scale if h_gt != h_lq * scale or w_gt != w_lq * scale: raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', f'multiplication of LQ ({h_lq}, {w_lq}).') if h_lq < lq_patch_size or w_lq < lq_patch_size: raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' f'({lq_patch_size}, {lq_patch_size}). ' f'Please remove {gt_path}.') # randomly choose top and left coordinates for lq patch top = random.randint(0, h_lq - lq_patch_size) left = random.randint(0, w_lq - lq_patch_size) # crop lq patch if input_type == 'Tensor': img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs] else: img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] # crop corresponding gt patch top_gt, left_gt = int(top * scale), int(left * scale) if input_type == 'Tensor': img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts] else: img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] if len(img_gts) == 1: img_gts = img_gts[0] if len(img_lqs) == 1: img_lqs = img_lqs[0] return img_gts, img_lqs # Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501 class BaseStorageBackend(metaclass=ABCMeta): """Abstract class of storage backends. All backends need to implement two apis: ``get()`` and ``get_text()``. ``get()`` reads the file as a byte stream and ``get_text()`` reads the file as texts. """ @abstractmethod def get(self, filepath): pass @abstractmethod def get_text(self, filepath): pass class MemcachedBackend(BaseStorageBackend): """Memcached storage backend. Attributes: server_list_cfg (str): Config file for memcached server list. client_cfg (str): Config file for memcached client. sys_path (str | None): Additional path to be appended to `sys.path`. Default: None. """ def __init__(self, server_list_cfg, client_cfg, sys_path=None): if sys_path is not None: import sys sys.path.append(sys_path) try: import mc except ImportError: raise ImportError('Please install memcached to enable MemcachedBackend.') self.server_list_cfg = server_list_cfg self.client_cfg = client_cfg self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg) # mc.pyvector servers as a point which points to a memory cache self._mc_buffer = mc.pyvector() def get(self, filepath): filepath = str(filepath) import mc self._client.Get(filepath, self._mc_buffer) value_buf = mc.ConvertBuffer(self._mc_buffer) return value_buf def get_text(self, filepath): raise NotImplementedError class HardDiskBackend(BaseStorageBackend): """Raw hard disks storage backend.""" def get(self, filepath): filepath = str(filepath) with open(filepath, 'rb') as f: value_buf = f.read() return value_buf def get_text(self, filepath): filepath = str(filepath) with open(filepath, 'r') as f: value_buf = f.read() return value_buf class LmdbBackend(BaseStorageBackend): """Lmdb storage backend. Args: db_paths (str | list[str]): Lmdb database paths. client_keys (str | list[str]): Lmdb client keys. Default: 'default'. readonly (bool, optional): Lmdb environment parameter. If True, disallow any write operations. Default: True. lock (bool, optional): Lmdb environment parameter. If False, when concurrent access occurs, do not lock the database. Default: False. readahead (bool, optional): Lmdb environment parameter. If False, disable the OS filesystem readahead mechanism, which may improve random read performance when a database is larger than RAM. Default: False. Attributes: db_paths (list): Lmdb database path. _client (list): A list of several lmdb envs. """ def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs): try: import lmdb except ImportError: raise ImportError('Please install lmdb to enable LmdbBackend.') if isinstance(client_keys, str): client_keys = [client_keys] if isinstance(db_paths, list): self.db_paths = [str(v) for v in db_paths] elif isinstance(db_paths, str): self.db_paths = [str(db_paths)] assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, ' f'but received {len(client_keys)} and {len(self.db_paths)}.') self._client = {} for client, path in zip(client_keys, self.db_paths): self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs) def get(self, filepath, client_key): """Get values according to the filepath from one lmdb named client_key. Args: filepath (str | obj:`Path`): Here, filepath is the lmdb key. client_key (str): Used for distinguishing different lmdb envs. """ filepath = str(filepath) assert client_key in self._client, (f'client_key {client_key} is not ' 'in lmdb clients.') client = self._client[client_key] with client.begin(write=False) as txn: value_buf = txn.get(filepath.encode('ascii')) return value_buf def get_text(self, filepath): raise NotImplementedError class FileClient(object): """A general file client to access files in different backend. The client loads a file or text in a specified backend from its path and return it as a binary file. it can also register other backend accessor with a given name and backend class. Attributes: backend (str): The storage backend type. Options are "disk", "memcached" and "lmdb". client (:obj:`BaseStorageBackend`): The backend object. """ _backends = { 'disk': HardDiskBackend, 'memcached': MemcachedBackend, 'lmdb': LmdbBackend, } def __init__(self, backend='disk', **kwargs): if backend not in self._backends: raise ValueError(f'Backend {backend} is not supported. Currently supported ones' f' are {list(self._backends.keys())}') self.backend = backend self.client = self._backends[backend](**kwargs) def get(self, filepath, client_key='default'): # client_key is used only for lmdb, where different fileclients have # different lmdb environments. if self.backend == 'lmdb': return self.client.get(filepath, client_key) else: return self.client.get(filepath) def get_text(self, filepath): return self.client.get_text(filepath) def imfrombytes(content, flag='color', float32=False): """Read an image from bytes. Args: content (bytes): Image bytes got from files or other streams. flag (str): Flags specifying the color type of a loaded image, candidates are `color`, `grayscale` and `unchanged`. float32 (bool): Whether to change to float32., If True, will also norm to [0, 1]. Default: False. Returns: ndarray: Loaded image array. """ img_np = np.frombuffer(content, np.uint8) imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED} img = cv2.imdecode(img_np, imread_flags[flag]) if float32: img = img.astype(np.float32) / 255. return img