# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py # noqa: E501 import functools import os import subprocess import torch import torch.distributed as dist import torch.multiprocessing as mp # ---------------------------------- # init # ---------------------------------- def init_dist(launcher, backend='nccl', **kwargs): if mp.get_start_method(allow_none=True) is None: mp.set_start_method('spawn') if launcher == 'pytorch': _init_dist_pytorch(backend, **kwargs) elif launcher == 'slurm': _init_dist_slurm(backend, **kwargs) else: raise ValueError(f'Invalid launcher type: {launcher}') def _init_dist_pytorch(backend, **kwargs): rank = int(os.environ['RANK']) num_gpus = torch.cuda.device_count() torch.cuda.set_device(rank % num_gpus) dist.init_process_group(backend=backend, **kwargs) def _init_dist_slurm(backend, port=None): """Initialize slurm distributed training environment. If argument ``port`` is not specified, then the master port will be system environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system environment variable, then a default port ``29500`` will be used. Args: backend (str): Backend of torch.distributed. port (int, optional): Master port. Defaults to None. """ proc_id = int(os.environ['SLURM_PROCID']) ntasks = int(os.environ['SLURM_NTASKS']) node_list = os.environ['SLURM_NODELIST'] num_gpus = torch.cuda.device_count() torch.cuda.set_device(proc_id % num_gpus) addr = subprocess.getoutput( f'scontrol show hostname {node_list} | head -n1') # specify master port if port is not None: os.environ['MASTER_PORT'] = str(port) elif 'MASTER_PORT' in os.environ: pass # use MASTER_PORT in the environment variable else: # 29500 is torch.distributed default port os.environ['MASTER_PORT'] = '29500' os.environ['MASTER_ADDR'] = addr os.environ['WORLD_SIZE'] = str(ntasks) os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) os.environ['RANK'] = str(proc_id) dist.init_process_group(backend=backend) # ---------------------------------- # get rank and world_size # ---------------------------------- def get_dist_info(): if dist.is_available(): initialized = dist.is_initialized() else: initialized = False if initialized: rank = dist.get_rank() world_size = dist.get_world_size() else: rank = 0 world_size = 1 return rank, world_size def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def master_only(func): @functools.wraps(func) def wrapper(*args, **kwargs): rank, _ = get_dist_info() if rank == 0: return func(*args, **kwargs) return wrapper # ---------------------------------- # operation across ranks # ---------------------------------- def reduce_sum(tensor): if not dist.is_available(): return tensor if not dist.is_initialized(): return tensor tensor = tensor.clone() dist.all_reduce(tensor, op=dist.ReduceOp.SUM) return tensor def gather_grad(params): world_size = get_world_size() if world_size == 1: return for param in params: if param.grad is not None: dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) param.grad.data.div_(world_size) def all_gather(data): world_size = get_world_size() if world_size == 1: return [data] buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to('cuda') local_size = torch.IntTensor([tensor.numel()]).to('cuda') size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda')) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda') tensor = torch.cat((tensor, padding), 0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_loss_dict(loss_dict): world_size = get_world_size() if world_size < 2: return loss_dict with torch.no_grad(): keys = [] losses = [] for k in sorted(loss_dict.keys()): keys.append(k) losses.append(loss_dict[k]) losses = torch.stack(losses, 0) dist.reduce(losses, dst=0) if dist.get_rank() == 0: losses /= world_size reduced_losses = {k: v for k, v in zip(keys, losses)} return reduced_losses