import math import torch.nn as nn import models.basicblock as B """ # -------------------------------------------- # SR network with Residual in Residual Dense Block (RRDB) # "ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks" # -------------------------------------------- """ class RRDB(nn.Module): """ gc: number of growth channels nb: number of RRDB """ def __init__(self, in_nc=3, out_nc=3, nc=64, nb=23, gc=32, upscale=4, act_mode='L', upsample_mode='upconv'): super(RRDB, self).__init__() assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL' n_upscale = int(math.log(upscale, 2)) if upscale == 3: n_upscale = 1 m_head = B.conv(in_nc, nc, mode='C') m_body = [B.RRDB(nc, gc=32, mode='C'+act_mode) for _ in range(nb)] m_body.append(B.conv(nc, nc, mode='C')) if upsample_mode == 'upconv': upsample_block = B.upsample_upconv elif upsample_mode == 'pixelshuffle': upsample_block = B.upsample_pixelshuffle elif upsample_mode == 'convtranspose': upsample_block = B.upsample_convtranspose else: raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) if upscale == 3: m_uper = upsample_block(nc, nc, mode='3'+act_mode) else: m_uper = [upsample_block(nc, nc, mode='2'+act_mode) for _ in range(n_upscale)] H_conv0 = B.conv(nc, nc, mode='C'+act_mode) H_conv1 = B.conv(nc, out_nc, mode='C') m_tail = B.sequential(H_conv0, H_conv1) self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper, m_tail) def forward(self, x): x = self.model(x) return x