import random import numpy as np import torch import torch.utils.data as data import utils.utils_image as util from utils import utils_sisr import hdf5storage import os class DatasetSRMD(data.Dataset): ''' # ----------------------------------------- # Get L/H/M for noisy image SR with Gaussian kernels. # Only "paths_H" is needed, sythesize bicubicly downsampled L on-the-fly. # ----------------------------------------- # e.g., SRMD, H = f(L, kernel, sigma), sigma is noise level # ----------------------------------------- ''' def __init__(self, opt): super(DatasetSRMD, self).__init__() self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.sf = opt['scale'] if opt['scale'] else 4 self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96 self.L_size = self.patch_size // self.sf self.sigma = opt['sigma'] if opt['sigma'] else [0, 50] self.sigma_min, self.sigma_max = self.sigma[0], self.sigma[1] self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else 0 # ------------------------------------- # PCA projection matrix # ------------------------------------- self.p = hdf5storage.loadmat(os.path.join('kernels', 'srmd_pca_pytorch.mat'))['p'] self.ksize = int(np.sqrt(self.p.shape[-1])) # kernel size # ------------------------------------ # get paths of L/H # ------------------------------------ self.paths_H = util.get_image_paths(opt['dataroot_H']) self.paths_L = util.get_image_paths(opt['dataroot_L']) def __getitem__(self, index): # ------------------------------------ # get H image # ------------------------------------ H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) img_H = util.uint2single(img_H) # ------------------------------------ # modcrop for SR # ------------------------------------ img_H = util.modcrop(img_H, self.sf) # ------------------------------------ # kernel # ------------------------------------ if self.opt['phase'] == 'train': l_max = 10 theta = np.pi*random.random() l1 = 0.1+l_max*random.random() l2 = 0.1+(l1-0.1)*random.random() kernel = utils_sisr.anisotropic_Gaussian(ksize=self.ksize, theta=theta, l1=l1, l2=l2) else: kernel = utils_sisr.anisotropic_Gaussian(ksize=self.ksize, theta=np.pi, l1=0.1, l2=0.1) k = np.reshape(kernel, (-1), order="F") k_reduced = np.dot(self.p, k) k_reduced = torch.from_numpy(k_reduced).float() # ------------------------------------ # sythesize L image via specified degradation model # ------------------------------------ H, W, _ = img_H.shape img_L = utils_sisr.srmd_degradation(img_H, kernel, self.sf) img_L = np.float32(img_L) if self.opt['phase'] == 'train': """ # -------------------------------- # get L/H patch pairs # -------------------------------- """ H, W, C = img_L.shape # -------------------------------- # randomly crop L patch # -------------------------------- rnd_h = random.randint(0, max(0, H - self.L_size)) rnd_w = random.randint(0, max(0, W - self.L_size)) img_L = img_L[rnd_h:rnd_h + self.L_size, rnd_w:rnd_w + self.L_size, :] # -------------------------------- # crop corresponding H patch # -------------------------------- rnd_h_H, rnd_w_H = int(rnd_h * self.sf), int(rnd_w * self.sf) img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size, rnd_w_H:rnd_w_H + self.patch_size, :] # -------------------------------- # augmentation - flip and/or rotate # -------------------------------- mode = random.randint(0, 7) img_L, img_H = util.augment_img(img_L, mode=mode), util.augment_img(img_H, mode=mode) # -------------------------------- # get patch pairs # -------------------------------- img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L) # -------------------------------- # select noise level and get Gaussian noise # -------------------------------- if random.random() < 0.1: noise_level = torch.zeros(1).float() else: noise_level = torch.FloatTensor([np.random.uniform(self.sigma_min, self.sigma_max)])/255.0 # noise_level = torch.rand(1)*50/255.0 # noise_level = torch.min(torch.from_numpy(np.float32([7*np.random.chisquare(2.5)/255.0])),torch.Tensor([50./255.])) else: img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L) noise_level = noise_level = torch.FloatTensor([self.sigma_test]) # ------------------------------------ # add noise # ------------------------------------ noise = torch.randn(img_L.size()).mul_(noise_level).float() img_L.add_(noise) # ------------------------------------ # get degradation map M # ------------------------------------ M_vector = torch.cat((k_reduced, noise_level), 0).unsqueeze(1).unsqueeze(1) M = M_vector.repeat(1, img_L.size()[-2], img_L.size()[-1]) """ # ------------------------------------- # concat L and noise level map M # ------------------------------------- """ img_L = torch.cat((img_L, M), 0) L_path = H_path return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.paths_H)