import os.path import random import numpy as np import torch.utils.data as data import utils.utils_image as util class DatasetPlainPatch(data.Dataset): ''' # ----------------------------------------- # Get L/H for image-to-image mapping. # Both "paths_L" and "paths_H" are needed. # ----------------------------------------- # e.g., train denoiser with L and H patches # create a large patch dataset first # ----------------------------------------- ''' def __init__(self, opt): super(DatasetPlainPatch, self).__init__() print('Get L/H for image-to-image mapping. Both "paths_L" and "paths_H" are needed.') self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 64 self.num_patches_per_image = opt['num_patches_per_image'] if opt['num_patches_per_image'] else 40 self.num_sampled = opt['num_sampled'] if opt['num_sampled'] else 3000 # ------------------- # get the path of L/H # ------------------- self.paths_H = util.get_image_paths(opt['dataroot_H']) self.paths_L = util.get_image_paths(opt['dataroot_L']) assert self.paths_H, 'Error: H path is empty.' assert self.paths_L, 'Error: L path is empty. This dataset uses L path, you can use dataset_dnpatchh' if self.paths_L and self.paths_H: assert len(self.paths_L) == len(self.paths_H), 'H and L datasets have different number of images - {}, {}.'.format(len(self.paths_L), len(self.paths_H)) # ------------------------------------ # number of sampled images # ------------------------------------ self.num_sampled = min(self.num_sampled, len(self.paths_H)) # ------------------------------------ # reserve space with zeros # ------------------------------------ self.total_patches = self.num_sampled * self.num_patches_per_image self.H_data = np.zeros([self.total_patches, self.path_size, self.path_size, self.n_channels], dtype=np.uint8) self.L_data = np.zeros([self.total_patches, self.path_size, self.path_size, self.n_channels], dtype=np.uint8) # ------------------------------------ # update H patches # ------------------------------------ self.update_data() def update_data(self): """ # ------------------------------------ # update whole L/H patches # ------------------------------------ """ self.index_sampled = random.sample(range(0, len(self.paths_H), 1), self.num_sampled) n_count = 0 for i in range(len(self.index_sampled)): L_patches, H_patches = self.get_patches(self.index_sampled[i]) for (L_patch, H_patch) in zip(L_patches, H_patches): self.L_data[n_count,:,:,:] = L_patch self.H_data[n_count,:,:,:] = H_patch n_count += 1 print('Training data updated! Total number of patches is: %5.2f X %5.2f = %5.2f\n' % (len(self.H_data)//128, 128, len(self.H_data))) def get_patches(self, index): """ # ------------------------------------ # get L/H patches from L/H images # ------------------------------------ """ L_path = self.paths_L[index] H_path = self.paths_H[index] img_L = util.imread_uint(L_path, self.n_channels) # uint format img_H = util.imread_uint(H_path, self.n_channels) # uint format H, W = img_H.shape[:2] L_patches, H_patches = [], [] num = self.num_patches_per_image for _ in range(num): rnd_h = random.randint(0, max(0, H - self.path_size)) rnd_w = random.randint(0, max(0, W - self.path_size)) L_patch = img_L[rnd_h:rnd_h + self.path_size, rnd_w:rnd_w + self.path_size, :] H_patch = img_H[rnd_h:rnd_h + self.path_size, rnd_w:rnd_w + self.path_size, :] L_patches.append(L_patch) H_patches.append(H_patch) return L_patches, H_patches def __getitem__(self, index): if self.opt['phase'] == 'train': patch_L, patch_H = self.L_data[index], self.H_data[index] # -------------------------------- # augmentation - flip and/or rotate # -------------------------------- mode = random.randint(0, 7) patch_L = util.augment_img(patch_L, mode=mode) patch_H = util.augment_img(patch_H, mode=mode) patch_L, patch_H = util.uint2tensor3(patch_L), util.uint2tensor3(patch_H) else: L_path, H_path = self.paths_L[index], self.paths_H[index] patch_L = util.imread_uint(L_path, self.n_channels) patch_H = util.imread_uint(H_path, self.n_channels) patch_L, patch_H = util.uint2tensor3(patch_L), util.uint2tensor3(patch_H) return {'L': patch_L, 'H': patch_H} def __len__(self): return self.total_patches