import torch.utils.data as data import utils.utils_image as util class DatasetL(data.Dataset): ''' # ----------------------------------------- # Get L in testing. # Only "dataroot_L" is needed. # ----------------------------------------- # ----------------------------------------- ''' def __init__(self, opt): super(DatasetL, self).__init__() print('Read L in testing. Only "dataroot_L" is needed.') self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 # ------------------------------------ # get the path of L # ------------------------------------ self.paths_L = util.get_image_paths(opt['dataroot_L']) assert self.paths_L, 'Error: L paths are empty.' def __getitem__(self, index): L_path = None # ------------------------------------ # get L image # ------------------------------------ L_path = self.paths_L[index] img_L = util.imread_uint(L_path, self.n_channels) # ------------------------------------ # HWC to CHW, numpy to tensor # ------------------------------------ img_L = util.uint2tensor3(img_L) return {'L': img_L, 'L_path': L_path} def __len__(self): return len(self.paths_L)