import random import numpy as np import torch import torch.utils.data as data import utils.utils_image as util class DatasetFDnCNN(data.Dataset): """ # ----------------------------------------- # Get L/H/M for denosing on AWGN with a range of sigma. # Only dataroot_H is needed. # ----------------------------------------- # e.g., FDnCNN, H = f(cat(L, M)), M is noise level map # ----------------------------------------- """ def __init__(self, opt): super(DatasetFDnCNN, self).__init__() self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.patch_size = self.opt['H_size'] if opt['H_size'] else 64 self.sigma = opt['sigma'] if opt['sigma'] else [0, 75] self.sigma_min, self.sigma_max = self.sigma[0], self.sigma[1] self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else 25 # ------------------------------------- # get the path of H, return None if input is None # ------------------------------------- self.paths_H = util.get_image_paths(opt['dataroot_H']) def __getitem__(self, index): # ------------------------------------- # get H image # ------------------------------------- H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) L_path = H_path if self.opt['phase'] == 'train': """ # -------------------------------- # get L/H/M patch pairs # -------------------------------- """ H, W = img_H.shape[:2] # --------------------------------- # randomly crop the patch # --------------------------------- rnd_h = random.randint(0, max(0, H - self.patch_size)) rnd_w = random.randint(0, max(0, W - self.patch_size)) patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :] # --------------------------------- # augmentation - flip, rotate # --------------------------------- mode = random.randint(0, 7) patch_H = util.augment_img(patch_H, mode=mode) # --------------------------------- # HWC to CHW, numpy(uint) to tensor # --------------------------------- img_H = util.uint2tensor3(patch_H) img_L = img_H.clone() # --------------------------------- # get noise level # --------------------------------- # noise_level = torch.FloatTensor([np.random.randint(self.sigma_min, self.sigma_max)])/255.0 noise_level = torch.FloatTensor([np.random.uniform(self.sigma_min, self.sigma_max)])/255.0 noise_level_map = torch.ones((1, img_L.size(1), img_L.size(2))).mul_(noise_level).float() # torch.full((1, img_L.size(1), img_L.size(2)), noise_level) # --------------------------------- # add noise # --------------------------------- noise = torch.randn(img_L.size()).mul_(noise_level).float() img_L.add_(noise) else: """ # -------------------------------- # get L/H/M image pairs # -------------------------------- """ img_H = util.uint2single(img_H) img_L = np.copy(img_H) np.random.seed(seed=0) img_L += np.random.normal(0, self.sigma_test/255.0, img_L.shape) noise_level_map = torch.ones((1, img_L.shape[0], img_L.shape[1])).mul_(self.sigma_test/255.0).float() # torch.full((1, img_L.size(1), img_L.size(2)), noise_level) # --------------------------------- # L/H image pairs # --------------------------------- img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L) """ # ------------------------------------- # concat L and noise level map M # ------------------------------------- """ img_L = torch.cat((img_L, noise_level_map), 0) return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.paths_H)