import random import numpy as np import torch import torch.utils.data as data import utils.utils_image as util class DatasetDnPatch(data.Dataset): """ # ----------------------------------------- # Get L/H for denosing on AWGN with fixed sigma. # ****Get all H patches first**** # Only dataroot_H is needed. # ----------------------------------------- # e.g., DnCNN with BSD400 # ----------------------------------------- """ def __init__(self, opt): super(DatasetDnPatch, self).__init__() print('Get L/H for denosing on AWGN with fixed sigma. Only dataroot_H is needed.') self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.patch_size = opt['H_size'] if opt['H_size'] else 64 self.sigma = opt['sigma'] if opt['sigma'] else 25 self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else self.sigma self.num_patches_per_image = opt['num_patches_per_image'] if opt['num_patches_per_image'] else 40 self.num_sampled = opt['num_sampled'] if opt['num_sampled'] else 3000 # ------------------------------------ # get paths of H # ------------------------------------ self.paths_H = util.get_image_paths(opt['dataroot_H']) assert self.paths_H, 'Error: H path is empty.' # ------------------------------------ # number of sampled H images # ------------------------------------ self.num_sampled = min(self.num_sampled, len(self.paths_H)) # ------------------------------------ # reserve space with zeros # ------------------------------------ self.total_patches = self.num_sampled * self.num_patches_per_image self.H_data = np.zeros([self.total_patches, self.patch_size, self.patch_size, self.n_channels], dtype=np.uint8) # ------------------------------------ # update H patches # ------------------------------------ self.update_data() def update_data(self): """ # ------------------------------------ # update whole H patches # ------------------------------------ """ self.index_sampled = random.sample(range(0, len(self.paths_H), 1), self.num_sampled) n_count = 0 for i in range(len(self.index_sampled)): H_patches = self.get_patches(self.index_sampled[i]) for H_patch in H_patches: self.H_data[n_count,:,:,:] = H_patch n_count += 1 print('Training data updated! Total number of patches is: %5.2f X %5.2f = %5.2f\n' % (len(self.H_data)//128, 128, len(self.H_data))) def get_patches(self, index): """ # ------------------------------------ # get H patches from an H image # ------------------------------------ """ H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) # uint format H, W = img_H.shape[:2] H_patches = [] num = self.num_patches_per_image for _ in range(num): rnd_h = random.randint(0, max(0, H - self.patch_size)) rnd_w = random.randint(0, max(0, W - self.patch_size)) H_patch = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :] H_patches.append(H_patch) return H_patches def __getitem__(self, index): H_path = 'toy.png' if self.opt['phase'] == 'train': patch_H = self.H_data[index] # -------------------------------- # augmentation - flip and/or rotate # -------------------------------- mode = random.randint(0, 7) patch_H = util.augment_img(patch_H, mode=mode) patch_H = util.uint2tensor3(patch_H) patch_L = patch_H.clone() # ------------------------------------ # add noise # ------------------------------------ noise = torch.randn(patch_L.size()).mul_(self.sigma/255.0) patch_L.add_(noise) else: H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) img_H = util.uint2single(img_H) img_L = np.copy(img_H) # ------------------------------------ # add noise # ------------------------------------ np.random.seed(seed=0) img_L += np.random.normal(0, self.sigma_test/255.0, img_L.shape) patch_L, patch_H = util.single2tensor3(img_L), util.single2tensor3(img_H) L_path = H_path return {'L': patch_L, 'H': patch_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.H_data)