import os.path import random import numpy as np import torch import torch.utils.data as data import utils.utils_image as util class DatasetDnCNN(data.Dataset): """ # ----------------------------------------- # Get L/H for denosing on AWGN with fixed sigma. # Only dataroot_H is needed. # ----------------------------------------- # e.g., DnCNN # ----------------------------------------- """ def __init__(self, opt): super(DatasetDnCNN, self).__init__() print('Dataset: Denosing on AWGN with fixed sigma. Only dataroot_H is needed.') self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.patch_size = opt['H_size'] if opt['H_size'] else 64 self.sigma = opt['sigma'] if opt['sigma'] else 25 self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else self.sigma # ------------------------------------ # get path of H # return None if input is None # ------------------------------------ self.paths_H = util.get_image_paths(opt['dataroot_H']) def __getitem__(self, index): # ------------------------------------ # get H image # ------------------------------------ H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) L_path = H_path if self.opt['phase'] == 'train': """ # -------------------------------- # get L/H patch pairs # -------------------------------- """ H, W, _ = img_H.shape # -------------------------------- # randomly crop the patch # -------------------------------- rnd_h = random.randint(0, max(0, H - self.patch_size)) rnd_w = random.randint(0, max(0, W - self.patch_size)) patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :] # -------------------------------- # augmentation - flip, rotate # -------------------------------- mode = random.randint(0, 7) patch_H = util.augment_img(patch_H, mode=mode) # -------------------------------- # HWC to CHW, numpy(uint) to tensor # -------------------------------- img_H = util.uint2tensor3(patch_H) img_L = img_H.clone() # -------------------------------- # add noise # -------------------------------- noise = torch.randn(img_L.size()).mul_(self.sigma/255.0) img_L.add_(noise) else: """ # -------------------------------- # get L/H image pairs # -------------------------------- """ img_H = util.uint2single(img_H) img_L = np.copy(img_H) # -------------------------------- # add noise # -------------------------------- np.random.seed(seed=0) img_L += np.random.normal(0, self.sigma_test/255.0, img_L.shape) # -------------------------------- # HWC to CHW, numpy to tensor # -------------------------------- img_L = util.single2tensor3(img_L) img_H = util.single2tensor3(img_H) return {'L': img_L, 'H': img_H, 'H_path': H_path, 'L_path': L_path} def __len__(self): return len(self.paths_H)