import torch import torch.nn.functional as F from torch.autograd import Variable import numpy as np from math import exp """ # ============================================ # SSIM loss # https://github.com/Po-Hsun-Su/pytorch-ssim # ============================================ """ def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) return gauss/gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size//2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size//2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1*mu2 sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2 C1 = 0.01**2 C2 = 0.03**2 ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) class SSIMLoss(torch.nn.Module): def __init__(self, window_size=11, size_average=True): super(SSIMLoss, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel) def forward(self, img1, img2): (_, channel, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return _ssim(img1, img2, window, self.window_size, channel, self.size_average) def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.size() window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average) if __name__ == '__main__': import cv2 from torch import optim from skimage import io npImg1 = cv2.imread("einstein.png") img1 = torch.from_numpy(np.rollaxis(npImg1, 2)).float().unsqueeze(0)/255.0 img2 = torch.rand(img1.size()) if torch.cuda.is_available(): img1 = img1.cuda() img2 = img2.cuda() img1 = Variable(img1, requires_grad=False) img2 = Variable(img2, requires_grad=True) ssim_value = ssim(img1, img2).item() print("Initial ssim:", ssim_value) ssim_loss = SSIMLoss() optimizer = optim.Adam([img2], lr=0.01) while ssim_value < 0.99: optimizer.zero_grad() ssim_out = -ssim_loss(img1, img2) ssim_value = -ssim_out.item() print('{:<4.4f}'.format(ssim_value)) ssim_out.backward() optimizer.step() img = np.transpose(img2.detach().cpu().squeeze().float().numpy(), (1,2,0)) io.imshow(np.uint8(np.clip(img*255, 0, 255)))