import random import numpy as np import torch.utils.data as data import utils.utils_image as util class DatasetPlain(data.Dataset): ''' # ----------------------------------------- # Get L/H for image-to-image mapping. # Both "paths_L" and "paths_H" are needed. # ----------------------------------------- # e.g., train denoiser with L and H # ----------------------------------------- ''' def __init__(self, opt): super(DatasetPlain, self).__init__() print('Get L/H for image-to-image mapping. Both "paths_L" and "paths_H" are needed.') self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 64 # ------------------------------------ # get the path of L/H # ------------------------------------ self.paths_H = util.get_image_paths(opt['dataroot_H']) self.paths_L = util.get_image_paths(opt['dataroot_L']) assert self.paths_H, 'Error: H path is empty.' assert self.paths_L, 'Error: L path is empty. Plain dataset assumes both L and H are given!' if self.paths_L and self.paths_H: assert len(self.paths_L) == len(self.paths_H), 'L/H mismatch - {}, {}.'.format(len(self.paths_L), len(self.paths_H)) def __getitem__(self, index): # ------------------------------------ # get H image # ------------------------------------ H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) # ------------------------------------ # get L image # ------------------------------------ L_path = self.paths_L[index] img_L = util.imread_uint(L_path, self.n_channels) # ------------------------------------ # if train, get L/H patch pair # ------------------------------------ if self.opt['phase'] == 'train': H, W, _ = img_H.shape # -------------------------------- # randomly crop the patch # -------------------------------- rnd_h = random.randint(0, max(0, H - self.patch_size)) rnd_w = random.randint(0, max(0, W - self.patch_size)) patch_L = img_L[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :] patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :] # -------------------------------- # augmentation - flip and/or rotate # -------------------------------- mode = random.randint(0, 7) patch_L, patch_H = util.augment_img(patch_L, mode=mode), util.augment_img(patch_H, mode=mode) # -------------------------------- # HWC to CHW, numpy(uint) to tensor # -------------------------------- img_L, img_H = util.uint2tensor3(patch_L), util.uint2tensor3(patch_H) else: # -------------------------------- # HWC to CHW, numpy(uint) to tensor # -------------------------------- img_L, img_H = util.uint2tensor3(img_L), util.uint2tensor3(img_H) return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.paths_H)