Spaces:
Running
Running
import math | |
import torch.nn as nn | |
import models.basicblock as B | |
""" | |
# -------------------------------------------- | |
# modified SRResNet | |
# -- MSRResNet_prior (for DPSR) | |
# -------------------------------------------- | |
References: | |
@inproceedings{zhang2019deep, | |
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, | |
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, | |
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, | |
pages={1671--1681}, | |
year={2019} | |
} | |
@inproceedings{wang2018esrgan, | |
title={Esrgan: Enhanced super-resolution generative adversarial networks}, | |
author={Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Change Loy, Chen}, | |
booktitle={European Conference on Computer Vision (ECCV)}, | |
pages={0--0}, | |
year={2018} | |
} | |
@inproceedings{ledig2017photo, | |
title={Photo-realistic single image super-resolution using a generative adversarial network}, | |
author={Ledig, Christian and Theis, Lucas and Husz{\'a}r, Ferenc and Caballero, Jose and Cunningham, Andrew and Acosta, Alejandro and Aitken, Andrew and Tejani, Alykhan and Totz, Johannes and Wang, Zehan and others}, | |
booktitle={IEEE conference on computer vision and pattern recognition}, | |
pages={4681--4690}, | |
year={2017} | |
} | |
# -------------------------------------------- | |
""" | |
# -------------------------------------------- | |
# MSRResNet super-resolver prior for DPSR | |
# https://github.com/cszn/DPSR | |
# https://github.com/cszn/DPSR/blob/master/models/network_srresnet.py | |
# -------------------------------------------- | |
class MSRResNet_prior(nn.Module): | |
def __init__(self, in_nc=4, out_nc=3, nc=96, nb=16, upscale=4, act_mode='R', upsample_mode='upconv'): | |
super(MSRResNet_prior, self).__init__() | |
n_upscale = int(math.log(upscale, 2)) | |
if upscale == 3: | |
n_upscale = 1 | |
m_head = B.conv(in_nc, nc, mode='C') | |
m_body = [B.ResBlock(nc, nc, mode='C'+act_mode+'C') for _ in range(nb)] | |
m_body.append(B.conv(nc, nc, mode='C')) | |
if upsample_mode == 'upconv': | |
upsample_block = B.upsample_upconv | |
elif upsample_mode == 'pixelshuffle': | |
upsample_block = B.upsample_pixelshuffle | |
elif upsample_mode == 'convtranspose': | |
upsample_block = B.upsample_convtranspose | |
else: | |
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) | |
if upscale == 3: | |
m_uper = upsample_block(nc, nc, mode='3'+act_mode) | |
else: | |
m_uper = [upsample_block(nc, nc, mode='2'+act_mode) for _ in range(n_upscale)] | |
H_conv0 = B.conv(nc, nc, mode='C'+act_mode) | |
H_conv1 = B.conv(nc, out_nc, bias=False, mode='C') | |
m_tail = B.sequential(H_conv0, H_conv1) | |
self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper, m_tail) | |
def forward(self, x): | |
x = self.model(x) | |
return x | |
class SRResNet(nn.Module): | |
def __init__(self, in_nc=3, out_nc=3, nc=64, nb=16, upscale=4, act_mode='R', upsample_mode='upconv'): | |
super(SRResNet, self).__init__() | |
n_upscale = int(math.log(upscale, 2)) | |
if upscale == 3: | |
n_upscale = 1 | |
m_head = B.conv(in_nc, nc, mode='C') | |
m_body = [B.ResBlock(nc, nc, mode='C'+act_mode+'C') for _ in range(nb)] | |
m_body.append(B.conv(nc, nc, mode='C')) | |
if upsample_mode == 'upconv': | |
upsample_block = B.upsample_upconv | |
elif upsample_mode == 'pixelshuffle': | |
upsample_block = B.upsample_pixelshuffle | |
elif upsample_mode == 'convtranspose': | |
upsample_block = B.upsample_convtranspose | |
else: | |
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) | |
if upscale == 3: | |
m_uper = upsample_block(nc, nc, mode='3'+act_mode) | |
else: | |
m_uper = [upsample_block(nc, nc, mode='2'+act_mode) for _ in range(n_upscale)] | |
H_conv0 = B.conv(nc, nc, mode='C'+act_mode) | |
H_conv1 = B.conv(nc, out_nc, bias=False, mode='C') | |
m_tail = B.sequential(H_conv0, H_conv1) | |
self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper, m_tail) | |
def forward(self, x): | |
x = self.model(x) | |
return x |