Spaces:
Running
Running
from models.model_plain import ModelPlain | |
import numpy as np | |
class ModelPlain4(ModelPlain): | |
"""Train with four inputs (L, k, sf, sigma) and with pixel loss for USRNet""" | |
# ---------------------------------------- | |
# feed L/H data | |
# ---------------------------------------- | |
def feed_data(self, data, need_H=True): | |
self.L = data['L'].to(self.device) # low-quality image | |
self.k = data['k'].to(self.device) # blur kernel | |
self.sf = np.int(data['sf'][0,...].squeeze().cpu().numpy()) # scale factor | |
self.sigma = data['sigma'].to(self.device) # noise level | |
if need_H: | |
self.H = data['H'].to(self.device) # H | |
# ---------------------------------------- | |
# feed (L, C) to netG and get E | |
# ---------------------------------------- | |
def netG_forward(self): | |
self.E = self.netG(self.L, self.k, self.sf, self.sigma) | |